feat: refactor peak cut

This commit is contained in:
hamster1963 2024-12-18 17:38:32 +08:00
parent 5f7892c837
commit 24d038b914

View File

@ -160,12 +160,48 @@ export const NetworkChart = React.memo(function NetworkChart({
return activeChart === defaultChart ? formattedData : chartData[activeChart] return activeChart === defaultChart ? formattedData : chartData[activeChart]
} }
// 如果开启了削峰,对数据进行处理
const data = ( const data = (
activeChart === defaultChart ? formattedData : chartData[activeChart] activeChart === defaultChart ? formattedData : chartData[activeChart]
) as ResultItem[] ) as ResultItem[]
const windowSize = 7 // 增加到7个点的移动平均
const weights = [0.1, 0.1, 0.15, 0.3, 0.15, 0.1, 0.1] // 加权平均的权重 const windowSize = 11 // 增加窗口大小以获取更好的统计效果
const alpha = 0.3 // EWMA平滑因子
// 辅助函数:计算中位数
const getMedian = (arr: number[]) => {
const sorted = [...arr].sort((a, b) => a - b)
const mid = Math.floor(sorted.length / 2)
return sorted.length % 2 ? sorted[mid] : (sorted[mid - 1] + sorted[mid]) / 2
}
// 辅助函数:异常值处理
const processValues = (values: number[]) => {
if (values.length === 0) return null
const median = getMedian(values)
const deviations = values.map((v) => Math.abs(v - median))
const medianDeviation = getMedian(deviations) * 1.4826 // MAD估计器
// 使用中位数绝对偏差(MAD)进行异常值检测
const validValues = values.filter(
(v) =>
Math.abs(v - median) <= 3 * medianDeviation && // 更严格的异常值判定
v <= median * 3, // 限制最大值不超过中位数的3倍
)
if (validValues.length === 0) return median // 如果没有有效值,返回中位数
// 计算EWMA
let ewma = validValues[0]
for (let i = 1; i < validValues.length; i++) {
ewma = alpha * validValues[i] + (1 - alpha) * ewma
}
return ewma
}
// 初始化EWMA历史值
const ewmaHistory: { [key: string]: number } = {}
return data.map((point, index) => { return data.map((point, index) => {
if (index < windowSize - 1) return point if (index < windowSize - 1) return point
@ -174,22 +210,40 @@ export const NetworkChart = React.memo(function NetworkChart({
const smoothed = { ...point } as ResultItem const smoothed = { ...point } as ResultItem
if (activeChart === defaultChart) { if (activeChart === defaultChart) {
// 处理所有线路的数据
chartDataKey.forEach((key) => { chartDataKey.forEach((key) => {
const values = window const values = window
.map((w) => w[key]) .map((w) => w[key])
.filter((v) => v !== undefined && v !== null) as number[] .filter((v) => v !== undefined && v !== null) as number[]
if (values.length === windowSize) {
smoothed[key] = values.reduce((acc, val, idx) => acc + val * weights[idx], 0) if (values.length > 0) {
const processed = processValues(values)
if (processed !== null) {
// 应用EWMA平滑
if (ewmaHistory[key] === undefined) {
ewmaHistory[key] = processed
} else {
ewmaHistory[key] = alpha * processed + (1 - alpha) * ewmaHistory[key]
}
smoothed[key] = ewmaHistory[key]
}
} }
}) })
} else { } else {
// 处理单条线路的数据
const values = window const values = window
.map((w) => w.avg_delay) .map((w) => w.avg_delay)
.filter((v) => v !== undefined && v !== null) as number[] .filter((v) => v !== undefined && v !== null) as number[]
if (values.length === windowSize) {
smoothed.avg_delay = values.reduce((acc, val, idx) => acc + val * weights[idx], 0) if (values.length > 0) {
const processed = processValues(values)
if (processed !== null) {
// 应用EWMA平滑
if (ewmaHistory["current"] === undefined) {
ewmaHistory["current"] = processed
} else {
ewmaHistory["current"] = alpha * processed + (1 - alpha) * ewmaHistory["current"]
}
smoothed.avg_delay = ewmaHistory["current"]
}
} }
} }