update vendor

This commit is contained in:
ginuerzh 2018-11-16 18:33:42 +08:00
parent 1e24898e87
commit 73bc679bbf
427 changed files with 189909 additions and 0 deletions

1
vendor/github.com/miekg/dns/AUTHORS generated vendored Normal file
View File

@ -0,0 +1 @@
Miek Gieben <miek@miek.nl>

10
vendor/github.com/miekg/dns/CONTRIBUTORS generated vendored Normal file
View File

@ -0,0 +1,10 @@
Alex A. Skinner
Andrew Tunnell-Jones
Ask Bjørn Hansen
Dave Cheney
Dusty Wilson
Marek Majkowski
Peter van Dijk
Omri Bahumi
Alex Sergeyev
James Hartig

9
vendor/github.com/miekg/dns/COPYRIGHT generated vendored Normal file
View File

@ -0,0 +1,9 @@
Copyright 2009 The Go Authors. All rights reserved. Use of this source code
is governed by a BSD-style license that can be found in the LICENSE file.
Extensions of the original work are copyright (c) 2011 Miek Gieben
Copyright 2011 Miek Gieben. All rights reserved. Use of this source code is
governed by a BSD-style license that can be found in the LICENSE file.
Copyright 2014 CloudFlare. All rights reserved. Use of this source code is
governed by a BSD-style license that can be found in the LICENSE file.

21
vendor/github.com/miekg/dns/Gopkg.lock generated vendored Normal file
View File

@ -0,0 +1,21 @@
# This file is autogenerated, do not edit; changes may be undone by the next 'dep ensure'.
[[projects]]
branch = "master"
name = "golang.org/x/crypto"
packages = ["ed25519","ed25519/internal/edwards25519"]
revision = "b47b1587369238182299fe4dad77d05b8b461e06"
[[projects]]
branch = "master"
name = "golang.org/x/net"
packages = ["bpf","internal/iana","internal/socket","ipv4","ipv6"]
revision = "1e491301e022f8f977054da4c2d852decd59571f"
[solve-meta]
analyzer-name = "dep"
analyzer-version = 1
inputs-digest = "c4abc38abaeeeeb9be92455c9c02cae32841122b8982aaa067ef25bb8e86ff9d"
solver-name = "gps-cdcl"
solver-version = 1

26
vendor/github.com/miekg/dns/Gopkg.toml generated vendored Normal file
View File

@ -0,0 +1,26 @@
# Gopkg.toml example
#
# Refer to https://github.com/golang/dep/blob/master/docs/Gopkg.toml.md
# for detailed Gopkg.toml documentation.
#
# required = ["github.com/user/thing/cmd/thing"]
# ignored = ["github.com/user/project/pkgX", "bitbucket.org/user/project/pkgA/pkgY"]
#
# [[constraint]]
# name = "github.com/user/project"
# version = "1.0.0"
#
# [[constraint]]
# name = "github.com/user/project2"
# branch = "dev"
# source = "github.com/myfork/project2"
#
# [[override]]
# name = "github.com/x/y"
# version = "2.4.0"
[[constraint]]
branch = "master"
name = "golang.org/x/crypto"

32
vendor/github.com/miekg/dns/LICENSE generated vendored Normal file
View File

@ -0,0 +1,32 @@
Extensions of the original work are copyright (c) 2011 Miek Gieben
As this is fork of the official Go code the same license applies:
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

33
vendor/github.com/miekg/dns/Makefile.fuzz generated vendored Normal file
View File

@ -0,0 +1,33 @@
# Makefile for fuzzing
#
# Use go-fuzz and needs the tools installed.
# See https://blog.cloudflare.com/dns-parser-meet-go-fuzzer/
#
# Installing go-fuzz:
# $ make -f Makefile.fuzz get
# Installs:
# * github.com/dvyukov/go-fuzz/go-fuzz
# * get github.com/dvyukov/go-fuzz/go-fuzz-build
all: build
.PHONY: build
build:
go-fuzz-build -tags fuzz github.com/miekg/dns
.PHONY: build-newrr
build-newrr:
go-fuzz-build -func FuzzNewRR -tags fuzz github.com/miekg/dns
.PHONY: fuzz
fuzz:
go-fuzz -bin=dns-fuzz.zip -workdir=fuzz
.PHONY: get
get:
go get github.com/dvyukov/go-fuzz/go-fuzz
go get github.com/dvyukov/go-fuzz/go-fuzz-build
.PHONY: clean
clean:
rm *-fuzz.zip

52
vendor/github.com/miekg/dns/Makefile.release generated vendored Normal file
View File

@ -0,0 +1,52 @@
# Makefile for releasing.
#
# The release is controlled from version.go. The version found there is
# used to tag the git repo, we're not building any artifects so there is nothing
# to upload to github.
#
# * Up the version in version.go
# * Run: make -f Makefile.release release
# * will *commit* your change with 'Release $VERSION'
# * push to github
#
define GO
//+build ignore
package main
import (
"fmt"
"github.com/miekg/dns"
)
func main() {
fmt.Println(dns.Version.String())
}
endef
$(file > version_release.go,$(GO))
VERSION:=$(shell go run version_release.go)
TAG="v$(VERSION)"
all:
@echo Use the \'release\' target to start a release $(VERSION)
rm -f version_release.go
.PHONY: release
release: commit push
@echo Released $(VERSION)
rm -f version_release.go
.PHONY: commit
commit:
@echo Committing release $(VERSION)
git commit -am"Release $(VERSION)"
git tag $(TAG)
.PHONY: push
push:
@echo Pushing release $(VERSION) to master
git push --tags
git push

171
vendor/github.com/miekg/dns/README.md generated vendored Normal file
View File

@ -0,0 +1,171 @@
[![Build Status](https://travis-ci.org/miekg/dns.svg?branch=master)](https://travis-ci.org/miekg/dns)
[![Code Coverage](https://img.shields.io/codecov/c/github/miekg/dns/master.svg)](https://codecov.io/github/miekg/dns?branch=master)
[![Go Report Card](https://goreportcard.com/badge/github.com/miekg/dns)](https://goreportcard.com/report/miekg/dns)
[![](https://godoc.org/github.com/miekg/dns?status.svg)](https://godoc.org/github.com/miekg/dns)
# Alternative (more granular) approach to a DNS library
> Less is more.
Complete and usable DNS library. All widely used Resource Records are supported, including the
DNSSEC types. It follows a lean and mean philosophy. If there is stuff you should know as a DNS
programmer there isn't a convenience function for it. Server side and client side programming is
supported, i.e. you can build servers and resolvers with it.
We try to keep the "master" branch as sane as possible and at the bleeding edge of standards,
avoiding breaking changes wherever reasonable. We support the last two versions of Go.
# Goals
* KISS;
* Fast;
* Small API. If it's easy to code in Go, don't make a function for it.
# Users
A not-so-up-to-date-list-that-may-be-actually-current:
* https://github.com/coredns/coredns
* https://cloudflare.com
* https://github.com/abh/geodns
* http://www.statdns.com/
* http://www.dnsinspect.com/
* https://github.com/chuangbo/jianbing-dictionary-dns
* http://www.dns-lg.com/
* https://github.com/fcambus/rrda
* https://github.com/kenshinx/godns
* https://github.com/skynetservices/skydns
* https://github.com/hashicorp/consul
* https://github.com/DevelopersPL/godnsagent
* https://github.com/duedil-ltd/discodns
* https://github.com/StalkR/dns-reverse-proxy
* https://github.com/tianon/rawdns
* https://mesosphere.github.io/mesos-dns/
* https://pulse.turbobytes.com/
* https://play.google.com/store/apps/details?id=com.turbobytes.dig
* https://github.com/fcambus/statzone
* https://github.com/benschw/dns-clb-go
* https://github.com/corny/dnscheck for http://public-dns.info/
* https://namesmith.io
* https://github.com/miekg/unbound
* https://github.com/miekg/exdns
* https://dnslookup.org
* https://github.com/looterz/grimd
* https://github.com/phamhongviet/serf-dns
* https://github.com/mehrdadrad/mylg
* https://github.com/bamarni/dockness
* https://github.com/fffaraz/microdns
* http://kelda.io
* https://github.com/ipdcode/hades (JD.COM)
* https://github.com/StackExchange/dnscontrol/
* https://www.dnsperf.com/
* https://dnssectest.net/
* https://dns.apebits.com
* https://github.com/oif/apex
* https://github.com/jedisct1/dnscrypt-proxy
* https://github.com/jedisct1/rpdns
* https://github.com/xor-gate/sshfp
* https://github.com/rs/dnstrace
* https://blitiri.com.ar/p/dnss ([github mirror](https://github.com/albertito/dnss))
Send pull request if you want to be listed here.
# Features
* UDP/TCP queries, IPv4 and IPv6;
* RFC 1035 zone file parsing ($INCLUDE, $ORIGIN, $TTL and $GENERATE (for all record types) are supported;
* Fast:
* Reply speed around ~ 80K qps (faster hardware results in more qps);
* Parsing RRs ~ 100K RR/s, that's 5M records in about 50 seconds;
* Server side programming (mimicking the net/http package);
* Client side programming;
* DNSSEC: signing, validating and key generation for DSA, RSA, ECDSA and Ed25519;
* EDNS0, NSID, Cookies;
* AXFR/IXFR;
* TSIG, SIG(0);
* DNS over TLS: optional encrypted connection between client and server;
* DNS name compression;
* Depends only on the standard library.
Have fun!
Miek Gieben - 2010-2012 - <miek@miek.nl>
# Building
Building is done with the `go` tool. If you have setup your GOPATH correctly, the following should
work:
go get github.com/miekg/dns
go build github.com/miekg/dns
## Examples
A short "how to use the API" is at the beginning of doc.go (this also will show
when you call `godoc github.com/miekg/dns`).
Example programs can be found in the `github.com/miekg/exdns` repository.
## Supported RFCs
*all of them*
* 103{4,5} - DNS standard
* 1348 - NSAP record (removed the record)
* 1982 - Serial Arithmetic
* 1876 - LOC record
* 1995 - IXFR
* 1996 - DNS notify
* 2136 - DNS Update (dynamic updates)
* 2181 - RRset definition - there is no RRset type though, just []RR
* 2537 - RSAMD5 DNS keys
* 2065 - DNSSEC (updated in later RFCs)
* 2671 - EDNS record
* 2782 - SRV record
* 2845 - TSIG record
* 2915 - NAPTR record
* 2929 - DNS IANA Considerations
* 3110 - RSASHA1 DNS keys
* 3225 - DO bit (DNSSEC OK)
* 340{1,2,3} - NAPTR record
* 3445 - Limiting the scope of (DNS)KEY
* 3597 - Unknown RRs
* 403{3,4,5} - DNSSEC + validation functions
* 4255 - SSHFP record
* 4343 - Case insensitivity
* 4408 - SPF record
* 4509 - SHA256 Hash in DS
* 4592 - Wildcards in the DNS
* 4635 - HMAC SHA TSIG
* 4701 - DHCID
* 4892 - id.server
* 5001 - NSID
* 5155 - NSEC3 record
* 5205 - HIP record
* 5702 - SHA2 in the DNS
* 5936 - AXFR
* 5966 - TCP implementation recommendations
* 6605 - ECDSA
* 6725 - IANA Registry Update
* 6742 - ILNP DNS
* 6840 - Clarifications and Implementation Notes for DNS Security
* 6844 - CAA record
* 6891 - EDNS0 update
* 6895 - DNS IANA considerations
* 6975 - Algorithm Understanding in DNSSEC
* 7043 - EUI48/EUI64 records
* 7314 - DNS (EDNS) EXPIRE Option
* 7477 - CSYNC RR
* 7828 - edns-tcp-keepalive EDNS0 Option
* 7553 - URI record
* 7858 - DNS over TLS: Initiation and Performance Considerations
* 7871 - EDNS0 Client Subnet
* 7873 - Domain Name System (DNS) Cookies (draft-ietf-dnsop-cookies)
* 8080 - EdDSA for DNSSEC
## Loosely based upon
* `ldns`
* `NSD`
* `Net::DNS`
* `GRONG`

577
vendor/github.com/miekg/dns/client.go generated vendored Normal file
View File

@ -0,0 +1,577 @@
package dns
// A client implementation.
import (
"bytes"
"context"
"crypto/tls"
"encoding/binary"
"fmt"
"io"
"io/ioutil"
"net"
"net/http"
"strings"
"time"
)
const (
dnsTimeout time.Duration = 2 * time.Second
tcpIdleTimeout time.Duration = 8 * time.Second
dohMimeType = "application/dns-message"
)
// A Conn represents a connection to a DNS server.
type Conn struct {
net.Conn // a net.Conn holding the connection
UDPSize uint16 // minimum receive buffer for UDP messages
TsigSecret map[string]string // secret(s) for Tsig map[<zonename>]<base64 secret>, zonename must be in canonical form (lowercase, fqdn, see RFC 4034 Section 6.2)
tsigRequestMAC string
}
// A Client defines parameters for a DNS client.
type Client struct {
Net string // if "tcp" or "tcp-tls" (DNS over TLS) a TCP query will be initiated, otherwise an UDP one (default is "" for UDP)
UDPSize uint16 // minimum receive buffer for UDP messages
TLSConfig *tls.Config // TLS connection configuration
Dialer *net.Dialer // a net.Dialer used to set local address, timeouts and more
// Timeout is a cumulative timeout for dial, write and read, defaults to 0 (disabled) - overrides DialTimeout, ReadTimeout,
// WriteTimeout when non-zero. Can be overridden with net.Dialer.Timeout (see Client.ExchangeWithDialer and
// Client.Dialer) or context.Context.Deadline (see the deprecated ExchangeContext)
Timeout time.Duration
DialTimeout time.Duration // net.DialTimeout, defaults to 2 seconds, or net.Dialer.Timeout if expiring earlier - overridden by Timeout when that value is non-zero
ReadTimeout time.Duration // net.Conn.SetReadTimeout value for connections, defaults to 2 seconds - overridden by Timeout when that value is non-zero
WriteTimeout time.Duration // net.Conn.SetWriteTimeout value for connections, defaults to 2 seconds - overridden by Timeout when that value is non-zero
HTTPClient *http.Client // The http.Client to use for DNS-over-HTTPS
TsigSecret map[string]string // secret(s) for Tsig map[<zonename>]<base64 secret>, zonename must be in canonical form (lowercase, fqdn, see RFC 4034 Section 6.2)
SingleInflight bool // if true suppress multiple outstanding queries for the same Qname, Qtype and Qclass
group singleflight
}
// Exchange performs a synchronous UDP query. It sends the message m to the address
// contained in a and waits for a reply. Exchange does not retry a failed query, nor
// will it fall back to TCP in case of truncation.
// See client.Exchange for more information on setting larger buffer sizes.
func Exchange(m *Msg, a string) (r *Msg, err error) {
client := Client{Net: "udp"}
r, _, err = client.Exchange(m, a)
return r, err
}
func (c *Client) dialTimeout() time.Duration {
if c.Timeout != 0 {
return c.Timeout
}
if c.DialTimeout != 0 {
return c.DialTimeout
}
return dnsTimeout
}
func (c *Client) readTimeout() time.Duration {
if c.ReadTimeout != 0 {
return c.ReadTimeout
}
return dnsTimeout
}
func (c *Client) writeTimeout() time.Duration {
if c.WriteTimeout != 0 {
return c.WriteTimeout
}
return dnsTimeout
}
// Dial connects to the address on the named network.
func (c *Client) Dial(address string) (conn *Conn, err error) {
// create a new dialer with the appropriate timeout
var d net.Dialer
if c.Dialer == nil {
d = net.Dialer{Timeout: c.getTimeoutForRequest(c.dialTimeout())}
} else {
d = *c.Dialer
}
network := c.Net
if network == "" {
network = "udp"
}
useTLS := strings.HasPrefix(network, "tcp") && strings.HasSuffix(network, "-tls")
conn = new(Conn)
if useTLS {
network = strings.TrimSuffix(network, "-tls")
conn.Conn, err = tls.DialWithDialer(&d, network, address, c.TLSConfig)
} else {
conn.Conn, err = d.Dial(network, address)
}
if err != nil {
return nil, err
}
return conn, nil
}
// Exchange performs a synchronous query. It sends the message m to the address
// contained in a and waits for a reply. Basic use pattern with a *dns.Client:
//
// c := new(dns.Client)
// in, rtt, err := c.Exchange(message, "127.0.0.1:53")
//
// Exchange does not retry a failed query, nor will it fall back to TCP in
// case of truncation.
// It is up to the caller to create a message that allows for larger responses to be
// returned. Specifically this means adding an EDNS0 OPT RR that will advertise a larger
// buffer, see SetEdns0. Messages without an OPT RR will fallback to the historic limit
// of 512 bytes
// To specify a local address or a timeout, the caller has to set the `Client.Dialer`
// attribute appropriately
func (c *Client) Exchange(m *Msg, address string) (r *Msg, rtt time.Duration, err error) {
if !c.SingleInflight {
if c.Net == "https" {
// TODO(tmthrgd): pipe timeouts into exchangeDOH
return c.exchangeDOH(context.TODO(), m, address)
}
return c.exchange(m, address)
}
t := "nop"
if t1, ok := TypeToString[m.Question[0].Qtype]; ok {
t = t1
}
cl := "nop"
if cl1, ok := ClassToString[m.Question[0].Qclass]; ok {
cl = cl1
}
r, rtt, err, shared := c.group.Do(m.Question[0].Name+t+cl, func() (*Msg, time.Duration, error) {
if c.Net == "https" {
// TODO(tmthrgd): pipe timeouts into exchangeDOH
return c.exchangeDOH(context.TODO(), m, address)
}
return c.exchange(m, address)
})
if r != nil && shared {
r = r.Copy()
}
return r, rtt, err
}
func (c *Client) exchange(m *Msg, a string) (r *Msg, rtt time.Duration, err error) {
var co *Conn
co, err = c.Dial(a)
if err != nil {
return nil, 0, err
}
defer co.Close()
opt := m.IsEdns0()
// If EDNS0 is used use that for size.
if opt != nil && opt.UDPSize() >= MinMsgSize {
co.UDPSize = opt.UDPSize()
}
// Otherwise use the client's configured UDP size.
if opt == nil && c.UDPSize >= MinMsgSize {
co.UDPSize = c.UDPSize
}
co.TsigSecret = c.TsigSecret
t := time.Now()
// write with the appropriate write timeout
co.SetWriteDeadline(t.Add(c.getTimeoutForRequest(c.writeTimeout())))
if err = co.WriteMsg(m); err != nil {
return nil, 0, err
}
co.SetReadDeadline(time.Now().Add(c.getTimeoutForRequest(c.readTimeout())))
r, err = co.ReadMsg()
if err == nil && r.Id != m.Id {
err = ErrId
}
rtt = time.Since(t)
return r, rtt, err
}
func (c *Client) exchangeDOH(ctx context.Context, m *Msg, a string) (r *Msg, rtt time.Duration, err error) {
p, err := m.Pack()
if err != nil {
return nil, 0, err
}
req, err := http.NewRequest(http.MethodPost, a, bytes.NewReader(p))
if err != nil {
return nil, 0, err
}
req.Header.Set("Content-Type", dohMimeType)
req.Header.Set("Accept", dohMimeType)
hc := http.DefaultClient
if c.HTTPClient != nil {
hc = c.HTTPClient
}
if ctx != context.Background() && ctx != context.TODO() {
req = req.WithContext(ctx)
}
t := time.Now()
resp, err := hc.Do(req)
if err != nil {
return nil, 0, err
}
defer closeHTTPBody(resp.Body)
if resp.StatusCode != http.StatusOK {
return nil, 0, fmt.Errorf("dns: server returned HTTP %d error: %q", resp.StatusCode, resp.Status)
}
if ct := resp.Header.Get("Content-Type"); ct != dohMimeType {
return nil, 0, fmt.Errorf("dns: unexpected Content-Type %q; expected %q", ct, dohMimeType)
}
p, err = ioutil.ReadAll(resp.Body)
if err != nil {
return nil, 0, err
}
rtt = time.Since(t)
r = new(Msg)
if err := r.Unpack(p); err != nil {
return r, 0, err
}
// TODO: TSIG? Is it even supported over DoH?
return r, rtt, nil
}
func closeHTTPBody(r io.ReadCloser) error {
io.Copy(ioutil.Discard, io.LimitReader(r, 8<<20))
return r.Close()
}
// ReadMsg reads a message from the connection co.
// If the received message contains a TSIG record the transaction signature
// is verified. This method always tries to return the message, however if an
// error is returned there are no guarantees that the returned message is a
// valid representation of the packet read.
func (co *Conn) ReadMsg() (*Msg, error) {
p, err := co.ReadMsgHeader(nil)
if err != nil {
return nil, err
}
m := new(Msg)
if err := m.Unpack(p); err != nil {
// If an error was returned, we still want to allow the user to use
// the message, but naively they can just check err if they don't want
// to use an erroneous message
return m, err
}
if t := m.IsTsig(); t != nil {
if _, ok := co.TsigSecret[t.Hdr.Name]; !ok {
return m, ErrSecret
}
// Need to work on the original message p, as that was used to calculate the tsig.
err = TsigVerify(p, co.TsigSecret[t.Hdr.Name], co.tsigRequestMAC, false)
}
return m, err
}
// ReadMsgHeader reads a DNS message, parses and populates hdr (when hdr is not nil).
// Returns message as a byte slice to be parsed with Msg.Unpack later on.
// Note that error handling on the message body is not possible as only the header is parsed.
func (co *Conn) ReadMsgHeader(hdr *Header) ([]byte, error) {
var (
p []byte
n int
err error
)
switch t := co.Conn.(type) {
case *net.TCPConn, *tls.Conn:
r := t.(io.Reader)
// First two bytes specify the length of the entire message.
l, err := tcpMsgLen(r)
if err != nil {
return nil, err
}
p = make([]byte, l)
n, err = tcpRead(r, p)
default:
if co.UDPSize > MinMsgSize {
p = make([]byte, co.UDPSize)
} else {
p = make([]byte, MinMsgSize)
}
n, err = co.Read(p)
}
if err != nil {
return nil, err
} else if n < headerSize {
return nil, ErrShortRead
}
p = p[:n]
if hdr != nil {
dh, _, err := unpackMsgHdr(p, 0)
if err != nil {
return nil, err
}
*hdr = dh
}
return p, err
}
// tcpMsgLen is a helper func to read first two bytes of stream as uint16 packet length.
func tcpMsgLen(t io.Reader) (int, error) {
p := []byte{0, 0}
n, err := t.Read(p)
if err != nil {
return 0, err
}
// As seen with my local router/switch, returns 1 byte on the above read,
// resulting a a ShortRead. Just write it out (instead of loop) and read the
// other byte.
if n == 1 {
n1, err := t.Read(p[1:])
if err != nil {
return 0, err
}
n += n1
}
if n != 2 {
return 0, ErrShortRead
}
l := binary.BigEndian.Uint16(p)
if l == 0 {
return 0, ErrShortRead
}
return int(l), nil
}
// tcpRead calls TCPConn.Read enough times to fill allocated buffer.
func tcpRead(t io.Reader, p []byte) (int, error) {
n, err := t.Read(p)
if err != nil {
return n, err
}
for n < len(p) {
j, err := t.Read(p[n:])
if err != nil {
return n, err
}
n += j
}
return n, err
}
// Read implements the net.Conn read method.
func (co *Conn) Read(p []byte) (n int, err error) {
if co.Conn == nil {
return 0, ErrConnEmpty
}
if len(p) < 2 {
return 0, io.ErrShortBuffer
}
switch t := co.Conn.(type) {
case *net.TCPConn, *tls.Conn:
r := t.(io.Reader)
l, err := tcpMsgLen(r)
if err != nil {
return 0, err
}
if l > len(p) {
return int(l), io.ErrShortBuffer
}
return tcpRead(r, p[:l])
}
// UDP connection
n, err = co.Conn.Read(p)
if err != nil {
return n, err
}
return n, err
}
// WriteMsg sends a message through the connection co.
// If the message m contains a TSIG record the transaction
// signature is calculated.
func (co *Conn) WriteMsg(m *Msg) (err error) {
var out []byte
if t := m.IsTsig(); t != nil {
mac := ""
if _, ok := co.TsigSecret[t.Hdr.Name]; !ok {
return ErrSecret
}
out, mac, err = TsigGenerate(m, co.TsigSecret[t.Hdr.Name], co.tsigRequestMAC, false)
// Set for the next read, although only used in zone transfers
co.tsigRequestMAC = mac
} else {
out, err = m.Pack()
}
if err != nil {
return err
}
if _, err = co.Write(out); err != nil {
return err
}
return nil
}
// Write implements the net.Conn Write method.
func (co *Conn) Write(p []byte) (n int, err error) {
switch t := co.Conn.(type) {
case *net.TCPConn, *tls.Conn:
w := t.(io.Writer)
lp := len(p)
if lp < 2 {
return 0, io.ErrShortBuffer
}
if lp > MaxMsgSize {
return 0, &Error{err: "message too large"}
}
l := make([]byte, 2, lp+2)
binary.BigEndian.PutUint16(l, uint16(lp))
p = append(l, p...)
n, err := io.Copy(w, bytes.NewReader(p))
return int(n), err
}
n, err = co.Conn.Write(p)
return n, err
}
// Return the appropriate timeout for a specific request
func (c *Client) getTimeoutForRequest(timeout time.Duration) time.Duration {
var requestTimeout time.Duration
if c.Timeout != 0 {
requestTimeout = c.Timeout
} else {
requestTimeout = timeout
}
// net.Dialer.Timeout has priority if smaller than the timeouts computed so
// far
if c.Dialer != nil && c.Dialer.Timeout != 0 {
if c.Dialer.Timeout < requestTimeout {
requestTimeout = c.Dialer.Timeout
}
}
return requestTimeout
}
// Dial connects to the address on the named network.
func Dial(network, address string) (conn *Conn, err error) {
conn = new(Conn)
conn.Conn, err = net.Dial(network, address)
if err != nil {
return nil, err
}
return conn, nil
}
// ExchangeContext performs a synchronous UDP query, like Exchange. It
// additionally obeys deadlines from the passed Context.
func ExchangeContext(ctx context.Context, m *Msg, a string) (r *Msg, err error) {
client := Client{Net: "udp"}
r, _, err = client.ExchangeContext(ctx, m, a)
// ignorint rtt to leave the original ExchangeContext API unchanged, but
// this function will go away
return r, err
}
// ExchangeConn performs a synchronous query. It sends the message m via the connection
// c and waits for a reply. The connection c is not closed by ExchangeConn.
// This function is going away, but can easily be mimicked:
//
// co := &dns.Conn{Conn: c} // c is your net.Conn
// co.WriteMsg(m)
// in, _ := co.ReadMsg()
// co.Close()
//
func ExchangeConn(c net.Conn, m *Msg) (r *Msg, err error) {
println("dns: ExchangeConn: this function is deprecated")
co := new(Conn)
co.Conn = c
if err = co.WriteMsg(m); err != nil {
return nil, err
}
r, err = co.ReadMsg()
if err == nil && r.Id != m.Id {
err = ErrId
}
return r, err
}
// DialTimeout acts like Dial but takes a timeout.
func DialTimeout(network, address string, timeout time.Duration) (conn *Conn, err error) {
client := Client{Net: network, Dialer: &net.Dialer{Timeout: timeout}}
conn, err = client.Dial(address)
if err != nil {
return nil, err
}
return conn, nil
}
// DialWithTLS connects to the address on the named network with TLS.
func DialWithTLS(network, address string, tlsConfig *tls.Config) (conn *Conn, err error) {
if !strings.HasSuffix(network, "-tls") {
network += "-tls"
}
client := Client{Net: network, TLSConfig: tlsConfig}
conn, err = client.Dial(address)
if err != nil {
return nil, err
}
return conn, nil
}
// DialTimeoutWithTLS acts like DialWithTLS but takes a timeout.
func DialTimeoutWithTLS(network, address string, tlsConfig *tls.Config, timeout time.Duration) (conn *Conn, err error) {
if !strings.HasSuffix(network, "-tls") {
network += "-tls"
}
client := Client{Net: network, Dialer: &net.Dialer{Timeout: timeout}, TLSConfig: tlsConfig}
conn, err = client.Dial(address)
if err != nil {
return nil, err
}
return conn, nil
}
// ExchangeContext acts like Exchange, but honors the deadline on the provided
// context, if present. If there is both a context deadline and a configured
// timeout on the client, the earliest of the two takes effect.
func (c *Client) ExchangeContext(ctx context.Context, m *Msg, a string) (r *Msg, rtt time.Duration, err error) {
if !c.SingleInflight && c.Net == "https" {
return c.exchangeDOH(ctx, m, a)
}
var timeout time.Duration
if deadline, ok := ctx.Deadline(); !ok {
timeout = 0
} else {
timeout = deadline.Sub(time.Now())
}
// not passing the context to the underlying calls, as the API does not support
// context. For timeouts you should set up Client.Dialer and call Client.Exchange.
// TODO(tmthrgd): this is a race condition
c.Dialer = &net.Dialer{Timeout: timeout}
return c.Exchange(m, a)
}

139
vendor/github.com/miekg/dns/clientconfig.go generated vendored Normal file
View File

@ -0,0 +1,139 @@
package dns
import (
"bufio"
"io"
"os"
"strconv"
"strings"
)
// ClientConfig wraps the contents of the /etc/resolv.conf file.
type ClientConfig struct {
Servers []string // servers to use
Search []string // suffixes to append to local name
Port string // what port to use
Ndots int // number of dots in name to trigger absolute lookup
Timeout int // seconds before giving up on packet
Attempts int // lost packets before giving up on server, not used in the package dns
}
// ClientConfigFromFile parses a resolv.conf(5) like file and returns
// a *ClientConfig.
func ClientConfigFromFile(resolvconf string) (*ClientConfig, error) {
file, err := os.Open(resolvconf)
if err != nil {
return nil, err
}
defer file.Close()
return ClientConfigFromReader(file)
}
// ClientConfigFromReader works like ClientConfigFromFile but takes an io.Reader as argument
func ClientConfigFromReader(resolvconf io.Reader) (*ClientConfig, error) {
c := new(ClientConfig)
scanner := bufio.NewScanner(resolvconf)
c.Servers = make([]string, 0)
c.Search = make([]string, 0)
c.Port = "53"
c.Ndots = 1
c.Timeout = 5
c.Attempts = 2
for scanner.Scan() {
if err := scanner.Err(); err != nil {
return nil, err
}
line := scanner.Text()
f := strings.Fields(line)
if len(f) < 1 {
continue
}
switch f[0] {
case "nameserver": // add one name server
if len(f) > 1 {
// One more check: make sure server name is
// just an IP address. Otherwise we need DNS
// to look it up.
name := f[1]
c.Servers = append(c.Servers, name)
}
case "domain": // set search path to just this domain
if len(f) > 1 {
c.Search = make([]string, 1)
c.Search[0] = f[1]
} else {
c.Search = make([]string, 0)
}
case "search": // set search path to given servers
c.Search = make([]string, len(f)-1)
for i := 0; i < len(c.Search); i++ {
c.Search[i] = f[i+1]
}
case "options": // magic options
for i := 1; i < len(f); i++ {
s := f[i]
switch {
case len(s) >= 6 && s[:6] == "ndots:":
n, _ := strconv.Atoi(s[6:])
if n < 0 {
n = 0
} else if n > 15 {
n = 15
}
c.Ndots = n
case len(s) >= 8 && s[:8] == "timeout:":
n, _ := strconv.Atoi(s[8:])
if n < 1 {
n = 1
}
c.Timeout = n
case len(s) >= 9 && s[:9] == "attempts:":
n, _ := strconv.Atoi(s[9:])
if n < 1 {
n = 1
}
c.Attempts = n
case s == "rotate":
/* not imp */
}
}
}
}
return c, nil
}
// NameList returns all of the names that should be queried based on the
// config. It is based off of go's net/dns name building, but it does not
// check the length of the resulting names.
func (c *ClientConfig) NameList(name string) []string {
// if this domain is already fully qualified, no append needed.
if IsFqdn(name) {
return []string{name}
}
// Check to see if the name has more labels than Ndots. Do this before making
// the domain fully qualified.
hasNdots := CountLabel(name) > c.Ndots
// Make the domain fully qualified.
name = Fqdn(name)
// Make a list of names based off search.
names := []string{}
// If name has enough dots, try that first.
if hasNdots {
names = append(names, name)
}
for _, s := range c.Search {
names = append(names, Fqdn(name+s))
}
// If we didn't have enough dots, try after suffixes.
if !hasNdots {
names = append(names, name)
}
return names
}

198
vendor/github.com/miekg/dns/compress_generate.go generated vendored Normal file
View File

@ -0,0 +1,198 @@
//+build ignore
// compression_generate.go is meant to run with go generate. It will use
// go/{importer,types} to track down all the RR struct types. Then for each type
// it will look to see if there are (compressible) names, if so it will add that
// type to compressionLenHelperType and comressionLenSearchType which "fake" the
// compression so that Len() is fast.
package main
import (
"bytes"
"fmt"
"go/format"
"go/importer"
"go/types"
"log"
"os"
)
var packageHdr = `
// Code generated by "go run compress_generate.go"; DO NOT EDIT.
package dns
`
// getTypeStruct will take a type and the package scope, and return the
// (innermost) struct if the type is considered a RR type (currently defined as
// those structs beginning with a RR_Header, could be redefined as implementing
// the RR interface). The bool return value indicates if embedded structs were
// resolved.
func getTypeStruct(t types.Type, scope *types.Scope) (*types.Struct, bool) {
st, ok := t.Underlying().(*types.Struct)
if !ok {
return nil, false
}
if st.Field(0).Type() == scope.Lookup("RR_Header").Type() {
return st, false
}
if st.Field(0).Anonymous() {
st, _ := getTypeStruct(st.Field(0).Type(), scope)
return st, true
}
return nil, false
}
func main() {
// Import and type-check the package
pkg, err := importer.Default().Import("github.com/miekg/dns")
fatalIfErr(err)
scope := pkg.Scope()
var domainTypes []string // Types that have a domain name in them (either compressible or not).
var cdomainTypes []string // Types that have a compressible domain name in them (subset of domainType)
Names:
for _, name := range scope.Names() {
o := scope.Lookup(name)
if o == nil || !o.Exported() {
continue
}
st, _ := getTypeStruct(o.Type(), scope)
if st == nil {
continue
}
if name == "PrivateRR" {
continue
}
if scope.Lookup("Type"+o.Name()) == nil && o.Name() != "RFC3597" {
log.Fatalf("Constant Type%s does not exist.", o.Name())
}
for i := 1; i < st.NumFields(); i++ {
if _, ok := st.Field(i).Type().(*types.Slice); ok {
if st.Tag(i) == `dns:"domain-name"` {
domainTypes = append(domainTypes, o.Name())
continue Names
}
if st.Tag(i) == `dns:"cdomain-name"` {
cdomainTypes = append(cdomainTypes, o.Name())
domainTypes = append(domainTypes, o.Name())
continue Names
}
continue
}
switch {
case st.Tag(i) == `dns:"domain-name"`:
domainTypes = append(domainTypes, o.Name())
continue Names
case st.Tag(i) == `dns:"cdomain-name"`:
cdomainTypes = append(cdomainTypes, o.Name())
domainTypes = append(domainTypes, o.Name())
continue Names
}
}
}
b := &bytes.Buffer{}
b.WriteString(packageHdr)
// compressionLenHelperType - all types that have domain-name/cdomain-name can be used for compressing names
fmt.Fprint(b, "func compressionLenHelperType(c map[string]int, r RR, initLen int) int {\n")
fmt.Fprint(b, "currentLen := initLen\n")
fmt.Fprint(b, "switch x := r.(type) {\n")
for _, name := range domainTypes {
o := scope.Lookup(name)
st, _ := getTypeStruct(o.Type(), scope)
fmt.Fprintf(b, "case *%s:\n", name)
for i := 1; i < st.NumFields(); i++ {
out := func(s string) {
fmt.Fprintf(b, "currentLen -= len(x.%s) + 1\n", st.Field(i).Name())
fmt.Fprintf(b, "currentLen += compressionLenHelper(c, x.%s, currentLen)\n", st.Field(i).Name())
}
if _, ok := st.Field(i).Type().(*types.Slice); ok {
switch st.Tag(i) {
case `dns:"domain-name"`:
fallthrough
case `dns:"cdomain-name"`:
// For HIP we need to slice over the elements in this slice.
fmt.Fprintf(b, `for i := range x.%s {
currentLen -= len(x.%s[i]) + 1
}
`, st.Field(i).Name(), st.Field(i).Name())
fmt.Fprintf(b, `for i := range x.%s {
currentLen += compressionLenHelper(c, x.%s[i], currentLen)
}
`, st.Field(i).Name(), st.Field(i).Name())
}
continue
}
switch {
case st.Tag(i) == `dns:"cdomain-name"`:
fallthrough
case st.Tag(i) == `dns:"domain-name"`:
out(st.Field(i).Name())
}
}
}
fmt.Fprintln(b, "}\nreturn currentLen - initLen\n}\n\n")
// compressionLenSearchType - search cdomain-tags types for compressible names.
fmt.Fprint(b, "func compressionLenSearchType(c map[string]int, r RR) (int, bool, int) {\n")
fmt.Fprint(b, "switch x := r.(type) {\n")
for _, name := range cdomainTypes {
o := scope.Lookup(name)
st, _ := getTypeStruct(o.Type(), scope)
fmt.Fprintf(b, "case *%s:\n", name)
j := 1
for i := 1; i < st.NumFields(); i++ {
out := func(s string, j int) {
fmt.Fprintf(b, "k%d, ok%d, sz%d := compressionLenSearch(c, x.%s)\n", j, j, j, st.Field(i).Name())
}
// There are no slice types with names that can be compressed.
switch {
case st.Tag(i) == `dns:"cdomain-name"`:
out(st.Field(i).Name(), j)
j++
}
}
k := "k1"
ok := "ok1"
sz := "sz1"
for i := 2; i < j; i++ {
k += fmt.Sprintf(" + k%d", i)
ok += fmt.Sprintf(" && ok%d", i)
sz += fmt.Sprintf(" + sz%d", i)
}
fmt.Fprintf(b, "return %s, %s, %s\n", k, ok, sz)
}
fmt.Fprintln(b, "}\nreturn 0, false, 0\n}\n\n")
// gofmt
res, err := format.Source(b.Bytes())
if err != nil {
b.WriteTo(os.Stderr)
log.Fatal(err)
}
f, err := os.Create("zcompress.go")
fatalIfErr(err)
defer f.Close()
f.Write(res)
}
func fatalIfErr(err error) {
if err != nil {
log.Fatal(err)
}
}

43
vendor/github.com/miekg/dns/dane.go generated vendored Normal file
View File

@ -0,0 +1,43 @@
package dns
import (
"crypto/sha256"
"crypto/sha512"
"crypto/x509"
"encoding/hex"
"errors"
)
// CertificateToDANE converts a certificate to a hex string as used in the TLSA or SMIMEA records.
func CertificateToDANE(selector, matchingType uint8, cert *x509.Certificate) (string, error) {
switch matchingType {
case 0:
switch selector {
case 0:
return hex.EncodeToString(cert.Raw), nil
case 1:
return hex.EncodeToString(cert.RawSubjectPublicKeyInfo), nil
}
case 1:
h := sha256.New()
switch selector {
case 0:
h.Write(cert.Raw)
return hex.EncodeToString(h.Sum(nil)), nil
case 1:
h.Write(cert.RawSubjectPublicKeyInfo)
return hex.EncodeToString(h.Sum(nil)), nil
}
case 2:
h := sha512.New()
switch selector {
case 0:
h.Write(cert.Raw)
return hex.EncodeToString(h.Sum(nil)), nil
case 1:
h.Write(cert.RawSubjectPublicKeyInfo)
return hex.EncodeToString(h.Sum(nil)), nil
}
}
return "", errors.New("dns: bad MatchingType or Selector")
}

288
vendor/github.com/miekg/dns/defaults.go generated vendored Normal file
View File

@ -0,0 +1,288 @@
package dns
import (
"errors"
"net"
"strconv"
)
const hexDigit = "0123456789abcdef"
// Everything is assumed in ClassINET.
// SetReply creates a reply message from a request message.
func (dns *Msg) SetReply(request *Msg) *Msg {
dns.Id = request.Id
dns.Response = true
dns.Opcode = request.Opcode
if dns.Opcode == OpcodeQuery {
dns.RecursionDesired = request.RecursionDesired // Copy rd bit
dns.CheckingDisabled = request.CheckingDisabled // Copy cd bit
}
dns.Rcode = RcodeSuccess
if len(request.Question) > 0 {
dns.Question = make([]Question, 1)
dns.Question[0] = request.Question[0]
}
return dns
}
// SetQuestion creates a question message, it sets the Question
// section, generates an Id and sets the RecursionDesired (RD)
// bit to true.
func (dns *Msg) SetQuestion(z string, t uint16) *Msg {
dns.Id = Id()
dns.RecursionDesired = true
dns.Question = make([]Question, 1)
dns.Question[0] = Question{z, t, ClassINET}
return dns
}
// SetNotify creates a notify message, it sets the Question
// section, generates an Id and sets the Authoritative (AA)
// bit to true.
func (dns *Msg) SetNotify(z string) *Msg {
dns.Opcode = OpcodeNotify
dns.Authoritative = true
dns.Id = Id()
dns.Question = make([]Question, 1)
dns.Question[0] = Question{z, TypeSOA, ClassINET}
return dns
}
// SetRcode creates an error message suitable for the request.
func (dns *Msg) SetRcode(request *Msg, rcode int) *Msg {
dns.SetReply(request)
dns.Rcode = rcode
return dns
}
// SetRcodeFormatError creates a message with FormError set.
func (dns *Msg) SetRcodeFormatError(request *Msg) *Msg {
dns.Rcode = RcodeFormatError
dns.Opcode = OpcodeQuery
dns.Response = true
dns.Authoritative = false
dns.Id = request.Id
return dns
}
// SetUpdate makes the message a dynamic update message. It
// sets the ZONE section to: z, TypeSOA, ClassINET.
func (dns *Msg) SetUpdate(z string) *Msg {
dns.Id = Id()
dns.Response = false
dns.Opcode = OpcodeUpdate
dns.Compress = false // BIND9 cannot handle compression
dns.Question = make([]Question, 1)
dns.Question[0] = Question{z, TypeSOA, ClassINET}
return dns
}
// SetIxfr creates message for requesting an IXFR.
func (dns *Msg) SetIxfr(z string, serial uint32, ns, mbox string) *Msg {
dns.Id = Id()
dns.Question = make([]Question, 1)
dns.Ns = make([]RR, 1)
s := new(SOA)
s.Hdr = RR_Header{z, TypeSOA, ClassINET, defaultTtl, 0}
s.Serial = serial
s.Ns = ns
s.Mbox = mbox
dns.Question[0] = Question{z, TypeIXFR, ClassINET}
dns.Ns[0] = s
return dns
}
// SetAxfr creates message for requesting an AXFR.
func (dns *Msg) SetAxfr(z string) *Msg {
dns.Id = Id()
dns.Question = make([]Question, 1)
dns.Question[0] = Question{z, TypeAXFR, ClassINET}
return dns
}
// SetTsig appends a TSIG RR to the message.
// This is only a skeleton TSIG RR that is added as the last RR in the
// additional section. The Tsig is calculated when the message is being send.
func (dns *Msg) SetTsig(z, algo string, fudge uint16, timesigned int64) *Msg {
t := new(TSIG)
t.Hdr = RR_Header{z, TypeTSIG, ClassANY, 0, 0}
t.Algorithm = algo
t.Fudge = fudge
t.TimeSigned = uint64(timesigned)
t.OrigId = dns.Id
dns.Extra = append(dns.Extra, t)
return dns
}
// SetEdns0 appends a EDNS0 OPT RR to the message.
// TSIG should always the last RR in a message.
func (dns *Msg) SetEdns0(udpsize uint16, do bool) *Msg {
e := new(OPT)
e.Hdr.Name = "."
e.Hdr.Rrtype = TypeOPT
e.SetUDPSize(udpsize)
if do {
e.SetDo()
}
dns.Extra = append(dns.Extra, e)
return dns
}
// IsTsig checks if the message has a TSIG record as the last record
// in the additional section. It returns the TSIG record found or nil.
func (dns *Msg) IsTsig() *TSIG {
if len(dns.Extra) > 0 {
if dns.Extra[len(dns.Extra)-1].Header().Rrtype == TypeTSIG {
return dns.Extra[len(dns.Extra)-1].(*TSIG)
}
}
return nil
}
// IsEdns0 checks if the message has a EDNS0 (OPT) record, any EDNS0
// record in the additional section will do. It returns the OPT record
// found or nil.
func (dns *Msg) IsEdns0() *OPT {
// EDNS0 is at the end of the additional section, start there.
// We might want to change this to *only* look at the last two
// records. So we see TSIG and/or OPT - this a slightly bigger
// change though.
for i := len(dns.Extra) - 1; i >= 0; i-- {
if dns.Extra[i].Header().Rrtype == TypeOPT {
return dns.Extra[i].(*OPT)
}
}
return nil
}
// IsDomainName checks if s is a valid domain name, it returns the number of
// labels and true, when a domain name is valid. Note that non fully qualified
// domain name is considered valid, in this case the last label is counted in
// the number of labels. When false is returned the number of labels is not
// defined. Also note that this function is extremely liberal; almost any
// string is a valid domain name as the DNS is 8 bit protocol. It checks if each
// label fits in 63 characters, but there is no length check for the entire
// string s. I.e. a domain name longer than 255 characters is considered valid.
func IsDomainName(s string) (labels int, ok bool) {
_, labels, err := packDomainName(s, nil, 0, nil, false)
return labels, err == nil
}
// IsSubDomain checks if child is indeed a child of the parent. If child and parent
// are the same domain true is returned as well.
func IsSubDomain(parent, child string) bool {
// Entire child is contained in parent
return CompareDomainName(parent, child) == CountLabel(parent)
}
// IsMsg sanity checks buf and returns an error if it isn't a valid DNS packet.
// The checking is performed on the binary payload.
func IsMsg(buf []byte) error {
// Header
if len(buf) < 12 {
return errors.New("dns: bad message header")
}
// Header: Opcode
// TODO(miek): more checks here, e.g. check all header bits.
return nil
}
// IsFqdn checks if a domain name is fully qualified.
func IsFqdn(s string) bool {
l := len(s)
if l == 0 {
return false
}
return s[l-1] == '.'
}
// IsRRset checks if a set of RRs is a valid RRset as defined by RFC 2181.
// This means the RRs need to have the same type, name, and class. Returns true
// if the RR set is valid, otherwise false.
func IsRRset(rrset []RR) bool {
if len(rrset) == 0 {
return false
}
if len(rrset) == 1 {
return true
}
rrHeader := rrset[0].Header()
rrType := rrHeader.Rrtype
rrClass := rrHeader.Class
rrName := rrHeader.Name
for _, rr := range rrset[1:] {
curRRHeader := rr.Header()
if curRRHeader.Rrtype != rrType || curRRHeader.Class != rrClass || curRRHeader.Name != rrName {
// Mismatch between the records, so this is not a valid rrset for
//signing/verifying
return false
}
}
return true
}
// Fqdn return the fully qualified domain name from s.
// If s is already fully qualified, it behaves as the identity function.
func Fqdn(s string) string {
if IsFqdn(s) {
return s
}
return s + "."
}
// Copied from the official Go code.
// ReverseAddr returns the in-addr.arpa. or ip6.arpa. hostname of the IP
// address suitable for reverse DNS (PTR) record lookups or an error if it fails
// to parse the IP address.
func ReverseAddr(addr string) (arpa string, err error) {
ip := net.ParseIP(addr)
if ip == nil {
return "", &Error{err: "unrecognized address: " + addr}
}
if ip.To4() != nil {
return strconv.Itoa(int(ip[15])) + "." + strconv.Itoa(int(ip[14])) + "." + strconv.Itoa(int(ip[13])) + "." +
strconv.Itoa(int(ip[12])) + ".in-addr.arpa.", nil
}
// Must be IPv6
buf := make([]byte, 0, len(ip)*4+len("ip6.arpa."))
// Add it, in reverse, to the buffer
for i := len(ip) - 1; i >= 0; i-- {
v := ip[i]
buf = append(buf, hexDigit[v&0xF])
buf = append(buf, '.')
buf = append(buf, hexDigit[v>>4])
buf = append(buf, '.')
}
// Append "ip6.arpa." and return (buf already has the final .)
buf = append(buf, "ip6.arpa."...)
return string(buf), nil
}
// String returns the string representation for the type t.
func (t Type) String() string {
if t1, ok := TypeToString[uint16(t)]; ok {
return t1
}
return "TYPE" + strconv.Itoa(int(t))
}
// String returns the string representation for the class c.
func (c Class) String() string {
if s, ok := ClassToString[uint16(c)]; ok {
// Only emit mnemonics when they are unambiguous, specically ANY is in both.
if _, ok := StringToType[s]; !ok {
return s
}
}
return "CLASS" + strconv.Itoa(int(c))
}
// String returns the string representation for the name n.
func (n Name) String() string {
return sprintName(string(n))
}

97
vendor/github.com/miekg/dns/dns.go generated vendored Normal file
View File

@ -0,0 +1,97 @@
package dns
import "strconv"
const (
year68 = 1 << 31 // For RFC1982 (Serial Arithmetic) calculations in 32 bits.
defaultTtl = 3600 // Default internal TTL.
// DefaultMsgSize is the standard default for messages larger than 512 bytes.
DefaultMsgSize = 4096
// MinMsgSize is the minimal size of a DNS packet.
MinMsgSize = 512
// MaxMsgSize is the largest possible DNS packet.
MaxMsgSize = 65535
)
// Error represents a DNS error.
type Error struct{ err string }
func (e *Error) Error() string {
if e == nil {
return "dns: <nil>"
}
return "dns: " + e.err
}
// An RR represents a resource record.
type RR interface {
// Header returns the header of an resource record. The header contains
// everything up to the rdata.
Header() *RR_Header
// String returns the text representation of the resource record.
String() string
// copy returns a copy of the RR
copy() RR
// len returns the length (in octets) of the uncompressed RR in wire format.
len() int
// pack packs an RR into wire format.
pack([]byte, int, map[string]int, bool) (int, error)
}
// RR_Header is the header all DNS resource records share.
type RR_Header struct {
Name string `dns:"cdomain-name"`
Rrtype uint16
Class uint16
Ttl uint32
Rdlength uint16 // Length of data after header.
}
// Header returns itself. This is here to make RR_Header implements the RR interface.
func (h *RR_Header) Header() *RR_Header { return h }
// Just to implement the RR interface.
func (h *RR_Header) copy() RR { return nil }
func (h *RR_Header) String() string {
var s string
if h.Rrtype == TypeOPT {
s = ";"
// and maybe other things
}
s += sprintName(h.Name) + "\t"
s += strconv.FormatInt(int64(h.Ttl), 10) + "\t"
s += Class(h.Class).String() + "\t"
s += Type(h.Rrtype).String() + "\t"
return s
}
func (h *RR_Header) len() int {
l := len(h.Name) + 1
l += 10 // rrtype(2) + class(2) + ttl(4) + rdlength(2)
return l
}
// ToRFC3597 converts a known RR to the unknown RR representation from RFC 3597.
func (rr *RFC3597) ToRFC3597(r RR) error {
buf := make([]byte, r.len()*2)
off, err := PackRR(r, buf, 0, nil, false)
if err != nil {
return err
}
buf = buf[:off]
if int(r.Header().Rdlength) > off {
return ErrBuf
}
rfc3597, _, err := unpackRFC3597(*r.Header(), buf, off-int(r.Header().Rdlength))
if err != nil {
return err
}
*rr = *rfc3597.(*RFC3597)
return nil
}

801
vendor/github.com/miekg/dns/dnssec.go generated vendored Normal file
View File

@ -0,0 +1,801 @@
package dns
import (
"bytes"
"crypto"
"crypto/dsa"
"crypto/ecdsa"
"crypto/elliptic"
_ "crypto/md5"
"crypto/rand"
"crypto/rsa"
_ "crypto/sha1"
_ "crypto/sha256"
_ "crypto/sha512"
"encoding/asn1"
"encoding/binary"
"encoding/hex"
"math/big"
"sort"
"strings"
"time"
"golang.org/x/crypto/ed25519"
)
// DNSSEC encryption algorithm codes.
const (
_ uint8 = iota
RSAMD5
DH
DSA
_ // Skip 4, RFC 6725, section 2.1
RSASHA1
DSANSEC3SHA1
RSASHA1NSEC3SHA1
RSASHA256
_ // Skip 9, RFC 6725, section 2.1
RSASHA512
_ // Skip 11, RFC 6725, section 2.1
ECCGOST
ECDSAP256SHA256
ECDSAP384SHA384
ED25519
ED448
INDIRECT uint8 = 252
PRIVATEDNS uint8 = 253 // Private (experimental keys)
PRIVATEOID uint8 = 254
)
// AlgorithmToString is a map of algorithm IDs to algorithm names.
var AlgorithmToString = map[uint8]string{
RSAMD5: "RSAMD5",
DH: "DH",
DSA: "DSA",
RSASHA1: "RSASHA1",
DSANSEC3SHA1: "DSA-NSEC3-SHA1",
RSASHA1NSEC3SHA1: "RSASHA1-NSEC3-SHA1",
RSASHA256: "RSASHA256",
RSASHA512: "RSASHA512",
ECCGOST: "ECC-GOST",
ECDSAP256SHA256: "ECDSAP256SHA256",
ECDSAP384SHA384: "ECDSAP384SHA384",
ED25519: "ED25519",
ED448: "ED448",
INDIRECT: "INDIRECT",
PRIVATEDNS: "PRIVATEDNS",
PRIVATEOID: "PRIVATEOID",
}
// StringToAlgorithm is the reverse of AlgorithmToString.
var StringToAlgorithm = reverseInt8(AlgorithmToString)
// AlgorithmToHash is a map of algorithm crypto hash IDs to crypto.Hash's.
var AlgorithmToHash = map[uint8]crypto.Hash{
RSAMD5: crypto.MD5, // Deprecated in RFC 6725
DSA: crypto.SHA1,
RSASHA1: crypto.SHA1,
RSASHA1NSEC3SHA1: crypto.SHA1,
RSASHA256: crypto.SHA256,
ECDSAP256SHA256: crypto.SHA256,
ECDSAP384SHA384: crypto.SHA384,
RSASHA512: crypto.SHA512,
ED25519: crypto.Hash(0),
}
// DNSSEC hashing algorithm codes.
const (
_ uint8 = iota
SHA1 // RFC 4034
SHA256 // RFC 4509
GOST94 // RFC 5933
SHA384 // Experimental
SHA512 // Experimental
)
// HashToString is a map of hash IDs to names.
var HashToString = map[uint8]string{
SHA1: "SHA1",
SHA256: "SHA256",
GOST94: "GOST94",
SHA384: "SHA384",
SHA512: "SHA512",
}
// StringToHash is a map of names to hash IDs.
var StringToHash = reverseInt8(HashToString)
// DNSKEY flag values.
const (
SEP = 1
REVOKE = 1 << 7
ZONE = 1 << 8
)
// The RRSIG needs to be converted to wireformat with some of the rdata (the signature) missing.
type rrsigWireFmt struct {
TypeCovered uint16
Algorithm uint8
Labels uint8
OrigTtl uint32
Expiration uint32
Inception uint32
KeyTag uint16
SignerName string `dns:"domain-name"`
/* No Signature */
}
// Used for converting DNSKEY's rdata to wirefmt.
type dnskeyWireFmt struct {
Flags uint16
Protocol uint8
Algorithm uint8
PublicKey string `dns:"base64"`
/* Nothing is left out */
}
func divRoundUp(a, b int) int {
return (a + b - 1) / b
}
// KeyTag calculates the keytag (or key-id) of the DNSKEY.
func (k *DNSKEY) KeyTag() uint16 {
if k == nil {
return 0
}
var keytag int
switch k.Algorithm {
case RSAMD5:
// Look at the bottom two bytes of the modules, which the last
// item in the pubkey. We could do this faster by looking directly
// at the base64 values. But I'm lazy.
modulus, _ := fromBase64([]byte(k.PublicKey))
if len(modulus) > 1 {
x := binary.BigEndian.Uint16(modulus[len(modulus)-2:])
keytag = int(x)
}
default:
keywire := new(dnskeyWireFmt)
keywire.Flags = k.Flags
keywire.Protocol = k.Protocol
keywire.Algorithm = k.Algorithm
keywire.PublicKey = k.PublicKey
wire := make([]byte, DefaultMsgSize)
n, err := packKeyWire(keywire, wire)
if err != nil {
return 0
}
wire = wire[:n]
for i, v := range wire {
if i&1 != 0 {
keytag += int(v) // must be larger than uint32
} else {
keytag += int(v) << 8
}
}
keytag += keytag >> 16 & 0xFFFF
keytag &= 0xFFFF
}
return uint16(keytag)
}
// ToDS converts a DNSKEY record to a DS record.
func (k *DNSKEY) ToDS(h uint8) *DS {
if k == nil {
return nil
}
ds := new(DS)
ds.Hdr.Name = k.Hdr.Name
ds.Hdr.Class = k.Hdr.Class
ds.Hdr.Rrtype = TypeDS
ds.Hdr.Ttl = k.Hdr.Ttl
ds.Algorithm = k.Algorithm
ds.DigestType = h
ds.KeyTag = k.KeyTag()
keywire := new(dnskeyWireFmt)
keywire.Flags = k.Flags
keywire.Protocol = k.Protocol
keywire.Algorithm = k.Algorithm
keywire.PublicKey = k.PublicKey
wire := make([]byte, DefaultMsgSize)
n, err := packKeyWire(keywire, wire)
if err != nil {
return nil
}
wire = wire[:n]
owner := make([]byte, 255)
off, err1 := PackDomainName(strings.ToLower(k.Hdr.Name), owner, 0, nil, false)
if err1 != nil {
return nil
}
owner = owner[:off]
// RFC4034:
// digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA);
// "|" denotes concatenation
// DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key.
var hash crypto.Hash
switch h {
case SHA1:
hash = crypto.SHA1
case SHA256:
hash = crypto.SHA256
case SHA384:
hash = crypto.SHA384
case SHA512:
hash = crypto.SHA512
default:
return nil
}
s := hash.New()
s.Write(owner)
s.Write(wire)
ds.Digest = hex.EncodeToString(s.Sum(nil))
return ds
}
// ToCDNSKEY converts a DNSKEY record to a CDNSKEY record.
func (k *DNSKEY) ToCDNSKEY() *CDNSKEY {
c := &CDNSKEY{DNSKEY: *k}
c.Hdr = k.Hdr
c.Hdr.Rrtype = TypeCDNSKEY
return c
}
// ToCDS converts a DS record to a CDS record.
func (d *DS) ToCDS() *CDS {
c := &CDS{DS: *d}
c.Hdr = d.Hdr
c.Hdr.Rrtype = TypeCDS
return c
}
// Sign signs an RRSet. The signature needs to be filled in with the values:
// Inception, Expiration, KeyTag, SignerName and Algorithm. The rest is copied
// from the RRset. Sign returns a non-nill error when the signing went OK.
// There is no check if RRSet is a proper (RFC 2181) RRSet. If OrigTTL is non
// zero, it is used as-is, otherwise the TTL of the RRset is used as the
// OrigTTL.
func (rr *RRSIG) Sign(k crypto.Signer, rrset []RR) error {
if k == nil {
return ErrPrivKey
}
// s.Inception and s.Expiration may be 0 (rollover etc.), the rest must be set
if rr.KeyTag == 0 || len(rr.SignerName) == 0 || rr.Algorithm == 0 {
return ErrKey
}
rr.Hdr.Rrtype = TypeRRSIG
rr.Hdr.Name = rrset[0].Header().Name
rr.Hdr.Class = rrset[0].Header().Class
if rr.OrigTtl == 0 { // If set don't override
rr.OrigTtl = rrset[0].Header().Ttl
}
rr.TypeCovered = rrset[0].Header().Rrtype
rr.Labels = uint8(CountLabel(rrset[0].Header().Name))
if strings.HasPrefix(rrset[0].Header().Name, "*") {
rr.Labels-- // wildcard, remove from label count
}
sigwire := new(rrsigWireFmt)
sigwire.TypeCovered = rr.TypeCovered
sigwire.Algorithm = rr.Algorithm
sigwire.Labels = rr.Labels
sigwire.OrigTtl = rr.OrigTtl
sigwire.Expiration = rr.Expiration
sigwire.Inception = rr.Inception
sigwire.KeyTag = rr.KeyTag
// For signing, lowercase this name
sigwire.SignerName = strings.ToLower(rr.SignerName)
// Create the desired binary blob
signdata := make([]byte, DefaultMsgSize)
n, err := packSigWire(sigwire, signdata)
if err != nil {
return err
}
signdata = signdata[:n]
wire, err := rawSignatureData(rrset, rr)
if err != nil {
return err
}
hash, ok := AlgorithmToHash[rr.Algorithm]
if !ok {
return ErrAlg
}
switch rr.Algorithm {
case ED25519:
// ed25519 signs the raw message and performs hashing internally.
// All other supported signature schemes operate over the pre-hashed
// message, and thus ed25519 must be handled separately here.
//
// The raw message is passed directly into sign and crypto.Hash(0) is
// used to signal to the crypto.Signer that the data has not been hashed.
signature, err := sign(k, append(signdata, wire...), crypto.Hash(0), rr.Algorithm)
if err != nil {
return err
}
rr.Signature = toBase64(signature)
default:
h := hash.New()
h.Write(signdata)
h.Write(wire)
signature, err := sign(k, h.Sum(nil), hash, rr.Algorithm)
if err != nil {
return err
}
rr.Signature = toBase64(signature)
}
return nil
}
func sign(k crypto.Signer, hashed []byte, hash crypto.Hash, alg uint8) ([]byte, error) {
signature, err := k.Sign(rand.Reader, hashed, hash)
if err != nil {
return nil, err
}
switch alg {
case RSASHA1, RSASHA1NSEC3SHA1, RSASHA256, RSASHA512:
return signature, nil
case ECDSAP256SHA256, ECDSAP384SHA384:
ecdsaSignature := &struct {
R, S *big.Int
}{}
if _, err := asn1.Unmarshal(signature, ecdsaSignature); err != nil {
return nil, err
}
var intlen int
switch alg {
case ECDSAP256SHA256:
intlen = 32
case ECDSAP384SHA384:
intlen = 48
}
signature := intToBytes(ecdsaSignature.R, intlen)
signature = append(signature, intToBytes(ecdsaSignature.S, intlen)...)
return signature, nil
// There is no defined interface for what a DSA backed crypto.Signer returns
case DSA, DSANSEC3SHA1:
// t := divRoundUp(divRoundUp(p.PublicKey.Y.BitLen(), 8)-64, 8)
// signature := []byte{byte(t)}
// signature = append(signature, intToBytes(r1, 20)...)
// signature = append(signature, intToBytes(s1, 20)...)
// rr.Signature = signature
case ED25519:
return signature, nil
}
return nil, ErrAlg
}
// Verify validates an RRSet with the signature and key. This is only the
// cryptographic test, the signature validity period must be checked separately.
// This function copies the rdata of some RRs (to lowercase domain names) for the validation to work.
func (rr *RRSIG) Verify(k *DNSKEY, rrset []RR) error {
// First the easy checks
if !IsRRset(rrset) {
return ErrRRset
}
if rr.KeyTag != k.KeyTag() {
return ErrKey
}
if rr.Hdr.Class != k.Hdr.Class {
return ErrKey
}
if rr.Algorithm != k.Algorithm {
return ErrKey
}
if strings.ToLower(rr.SignerName) != strings.ToLower(k.Hdr.Name) {
return ErrKey
}
if k.Protocol != 3 {
return ErrKey
}
// IsRRset checked that we have at least one RR and that the RRs in
// the set have consistent type, class, and name. Also check that type and
// class matches the RRSIG record.
if rrset[0].Header().Class != rr.Hdr.Class {
return ErrRRset
}
if rrset[0].Header().Rrtype != rr.TypeCovered {
return ErrRRset
}
// RFC 4035 5.3.2. Reconstructing the Signed Data
// Copy the sig, except the rrsig data
sigwire := new(rrsigWireFmt)
sigwire.TypeCovered = rr.TypeCovered
sigwire.Algorithm = rr.Algorithm
sigwire.Labels = rr.Labels
sigwire.OrigTtl = rr.OrigTtl
sigwire.Expiration = rr.Expiration
sigwire.Inception = rr.Inception
sigwire.KeyTag = rr.KeyTag
sigwire.SignerName = strings.ToLower(rr.SignerName)
// Create the desired binary blob
signeddata := make([]byte, DefaultMsgSize)
n, err := packSigWire(sigwire, signeddata)
if err != nil {
return err
}
signeddata = signeddata[:n]
wire, err := rawSignatureData(rrset, rr)
if err != nil {
return err
}
sigbuf := rr.sigBuf() // Get the binary signature data
if rr.Algorithm == PRIVATEDNS { // PRIVATEOID
// TODO(miek)
// remove the domain name and assume its ours?
}
hash, ok := AlgorithmToHash[rr.Algorithm]
if !ok {
return ErrAlg
}
switch rr.Algorithm {
case RSASHA1, RSASHA1NSEC3SHA1, RSASHA256, RSASHA512, RSAMD5:
// TODO(mg): this can be done quicker, ie. cache the pubkey data somewhere??
pubkey := k.publicKeyRSA() // Get the key
if pubkey == nil {
return ErrKey
}
h := hash.New()
h.Write(signeddata)
h.Write(wire)
return rsa.VerifyPKCS1v15(pubkey, hash, h.Sum(nil), sigbuf)
case ECDSAP256SHA256, ECDSAP384SHA384:
pubkey := k.publicKeyECDSA()
if pubkey == nil {
return ErrKey
}
// Split sigbuf into the r and s coordinates
r := new(big.Int).SetBytes(sigbuf[:len(sigbuf)/2])
s := new(big.Int).SetBytes(sigbuf[len(sigbuf)/2:])
h := hash.New()
h.Write(signeddata)
h.Write(wire)
if ecdsa.Verify(pubkey, h.Sum(nil), r, s) {
return nil
}
return ErrSig
case ED25519:
pubkey := k.publicKeyED25519()
if pubkey == nil {
return ErrKey
}
if ed25519.Verify(pubkey, append(signeddata, wire...), sigbuf) {
return nil
}
return ErrSig
default:
return ErrAlg
}
}
// ValidityPeriod uses RFC1982 serial arithmetic to calculate
// if a signature period is valid. If t is the zero time, the
// current time is taken other t is. Returns true if the signature
// is valid at the given time, otherwise returns false.
func (rr *RRSIG) ValidityPeriod(t time.Time) bool {
var utc int64
if t.IsZero() {
utc = time.Now().UTC().Unix()
} else {
utc = t.UTC().Unix()
}
modi := (int64(rr.Inception) - utc) / year68
mode := (int64(rr.Expiration) - utc) / year68
ti := int64(rr.Inception) + modi*year68
te := int64(rr.Expiration) + mode*year68
return ti <= utc && utc <= te
}
// Return the signatures base64 encodedig sigdata as a byte slice.
func (rr *RRSIG) sigBuf() []byte {
sigbuf, err := fromBase64([]byte(rr.Signature))
if err != nil {
return nil
}
return sigbuf
}
// publicKeyRSA returns the RSA public key from a DNSKEY record.
func (k *DNSKEY) publicKeyRSA() *rsa.PublicKey {
keybuf, err := fromBase64([]byte(k.PublicKey))
if err != nil {
return nil
}
if len(keybuf) < 1+1+64 {
// Exponent must be at least 1 byte and modulus at least 64
return nil
}
// RFC 2537/3110, section 2. RSA Public KEY Resource Records
// Length is in the 0th byte, unless its zero, then it
// it in bytes 1 and 2 and its a 16 bit number
explen := uint16(keybuf[0])
keyoff := 1
if explen == 0 {
explen = uint16(keybuf[1])<<8 | uint16(keybuf[2])
keyoff = 3
}
if explen > 4 || explen == 0 || keybuf[keyoff] == 0 {
// Exponent larger than supported by the crypto package,
// empty, or contains prohibited leading zero.
return nil
}
modoff := keyoff + int(explen)
modlen := len(keybuf) - modoff
if modlen < 64 || modlen > 512 || keybuf[modoff] == 0 {
// Modulus is too small, large, or contains prohibited leading zero.
return nil
}
pubkey := new(rsa.PublicKey)
expo := uint64(0)
for i := 0; i < int(explen); i++ {
expo <<= 8
expo |= uint64(keybuf[keyoff+i])
}
if expo > 1<<31-1 {
// Larger exponent than supported by the crypto package.
return nil
}
pubkey.E = int(expo)
pubkey.N = big.NewInt(0)
pubkey.N.SetBytes(keybuf[modoff:])
return pubkey
}
// publicKeyECDSA returns the Curve public key from the DNSKEY record.
func (k *DNSKEY) publicKeyECDSA() *ecdsa.PublicKey {
keybuf, err := fromBase64([]byte(k.PublicKey))
if err != nil {
return nil
}
pubkey := new(ecdsa.PublicKey)
switch k.Algorithm {
case ECDSAP256SHA256:
pubkey.Curve = elliptic.P256()
if len(keybuf) != 64 {
// wrongly encoded key
return nil
}
case ECDSAP384SHA384:
pubkey.Curve = elliptic.P384()
if len(keybuf) != 96 {
// Wrongly encoded key
return nil
}
}
pubkey.X = big.NewInt(0)
pubkey.X.SetBytes(keybuf[:len(keybuf)/2])
pubkey.Y = big.NewInt(0)
pubkey.Y.SetBytes(keybuf[len(keybuf)/2:])
return pubkey
}
func (k *DNSKEY) publicKeyDSA() *dsa.PublicKey {
keybuf, err := fromBase64([]byte(k.PublicKey))
if err != nil {
return nil
}
if len(keybuf) < 22 {
return nil
}
t, keybuf := int(keybuf[0]), keybuf[1:]
size := 64 + t*8
q, keybuf := keybuf[:20], keybuf[20:]
if len(keybuf) != 3*size {
return nil
}
p, keybuf := keybuf[:size], keybuf[size:]
g, y := keybuf[:size], keybuf[size:]
pubkey := new(dsa.PublicKey)
pubkey.Parameters.Q = big.NewInt(0).SetBytes(q)
pubkey.Parameters.P = big.NewInt(0).SetBytes(p)
pubkey.Parameters.G = big.NewInt(0).SetBytes(g)
pubkey.Y = big.NewInt(0).SetBytes(y)
return pubkey
}
func (k *DNSKEY) publicKeyED25519() ed25519.PublicKey {
keybuf, err := fromBase64([]byte(k.PublicKey))
if err != nil {
return nil
}
if len(keybuf) != ed25519.PublicKeySize {
return nil
}
return keybuf
}
type wireSlice [][]byte
func (p wireSlice) Len() int { return len(p) }
func (p wireSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p wireSlice) Less(i, j int) bool {
_, ioff, _ := UnpackDomainName(p[i], 0)
_, joff, _ := UnpackDomainName(p[j], 0)
return bytes.Compare(p[i][ioff+10:], p[j][joff+10:]) < 0
}
// Return the raw signature data.
func rawSignatureData(rrset []RR, s *RRSIG) (buf []byte, err error) {
wires := make(wireSlice, len(rrset))
for i, r := range rrset {
r1 := r.copy()
r1.Header().Ttl = s.OrigTtl
labels := SplitDomainName(r1.Header().Name)
// 6.2. Canonical RR Form. (4) - wildcards
if len(labels) > int(s.Labels) {
// Wildcard
r1.Header().Name = "*." + strings.Join(labels[len(labels)-int(s.Labels):], ".") + "."
}
// RFC 4034: 6.2. Canonical RR Form. (2) - domain name to lowercase
r1.Header().Name = strings.ToLower(r1.Header().Name)
// 6.2. Canonical RR Form. (3) - domain rdata to lowercase.
// NS, MD, MF, CNAME, SOA, MB, MG, MR, PTR,
// HINFO, MINFO, MX, RP, AFSDB, RT, SIG, PX, NXT, NAPTR, KX,
// SRV, DNAME, A6
//
// RFC 6840 - Clarifications and Implementation Notes for DNS Security (DNSSEC):
// Section 6.2 of [RFC4034] also erroneously lists HINFO as a record
// that needs conversion to lowercase, and twice at that. Since HINFO
// records contain no domain names, they are not subject to case
// conversion.
switch x := r1.(type) {
case *NS:
x.Ns = strings.ToLower(x.Ns)
case *MD:
x.Md = strings.ToLower(x.Md)
case *MF:
x.Mf = strings.ToLower(x.Mf)
case *CNAME:
x.Target = strings.ToLower(x.Target)
case *SOA:
x.Ns = strings.ToLower(x.Ns)
x.Mbox = strings.ToLower(x.Mbox)
case *MB:
x.Mb = strings.ToLower(x.Mb)
case *MG:
x.Mg = strings.ToLower(x.Mg)
case *MR:
x.Mr = strings.ToLower(x.Mr)
case *PTR:
x.Ptr = strings.ToLower(x.Ptr)
case *MINFO:
x.Rmail = strings.ToLower(x.Rmail)
x.Email = strings.ToLower(x.Email)
case *MX:
x.Mx = strings.ToLower(x.Mx)
case *RP:
x.Mbox = strings.ToLower(x.Mbox)
x.Txt = strings.ToLower(x.Txt)
case *AFSDB:
x.Hostname = strings.ToLower(x.Hostname)
case *RT:
x.Host = strings.ToLower(x.Host)
case *SIG:
x.SignerName = strings.ToLower(x.SignerName)
case *PX:
x.Map822 = strings.ToLower(x.Map822)
x.Mapx400 = strings.ToLower(x.Mapx400)
case *NAPTR:
x.Replacement = strings.ToLower(x.Replacement)
case *KX:
x.Exchanger = strings.ToLower(x.Exchanger)
case *SRV:
x.Target = strings.ToLower(x.Target)
case *DNAME:
x.Target = strings.ToLower(x.Target)
}
// 6.2. Canonical RR Form. (5) - origTTL
wire := make([]byte, r1.len()+1) // +1 to be safe(r)
off, err1 := PackRR(r1, wire, 0, nil, false)
if err1 != nil {
return nil, err1
}
wire = wire[:off]
wires[i] = wire
}
sort.Sort(wires)
for i, wire := range wires {
if i > 0 && bytes.Equal(wire, wires[i-1]) {
continue
}
buf = append(buf, wire...)
}
return buf, nil
}
func packSigWire(sw *rrsigWireFmt, msg []byte) (int, error) {
// copied from zmsg.go RRSIG packing
off, err := packUint16(sw.TypeCovered, msg, 0)
if err != nil {
return off, err
}
off, err = packUint8(sw.Algorithm, msg, off)
if err != nil {
return off, err
}
off, err = packUint8(sw.Labels, msg, off)
if err != nil {
return off, err
}
off, err = packUint32(sw.OrigTtl, msg, off)
if err != nil {
return off, err
}
off, err = packUint32(sw.Expiration, msg, off)
if err != nil {
return off, err
}
off, err = packUint32(sw.Inception, msg, off)
if err != nil {
return off, err
}
off, err = packUint16(sw.KeyTag, msg, off)
if err != nil {
return off, err
}
off, err = PackDomainName(sw.SignerName, msg, off, nil, false)
if err != nil {
return off, err
}
return off, nil
}
func packKeyWire(dw *dnskeyWireFmt, msg []byte) (int, error) {
// copied from zmsg.go DNSKEY packing
off, err := packUint16(dw.Flags, msg, 0)
if err != nil {
return off, err
}
off, err = packUint8(dw.Protocol, msg, off)
if err != nil {
return off, err
}
off, err = packUint8(dw.Algorithm, msg, off)
if err != nil {
return off, err
}
off, err = packStringBase64(dw.PublicKey, msg, off)
if err != nil {
return off, err
}
return off, nil
}

178
vendor/github.com/miekg/dns/dnssec_keygen.go generated vendored Normal file
View File

@ -0,0 +1,178 @@
package dns
import (
"crypto"
"crypto/dsa"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
"math/big"
"golang.org/x/crypto/ed25519"
)
// Generate generates a DNSKEY of the given bit size.
// The public part is put inside the DNSKEY record.
// The Algorithm in the key must be set as this will define
// what kind of DNSKEY will be generated.
// The ECDSA algorithms imply a fixed keysize, in that case
// bits should be set to the size of the algorithm.
func (k *DNSKEY) Generate(bits int) (crypto.PrivateKey, error) {
switch k.Algorithm {
case DSA, DSANSEC3SHA1:
if bits != 1024 {
return nil, ErrKeySize
}
case RSAMD5, RSASHA1, RSASHA256, RSASHA1NSEC3SHA1:
if bits < 512 || bits > 4096 {
return nil, ErrKeySize
}
case RSASHA512:
if bits < 1024 || bits > 4096 {
return nil, ErrKeySize
}
case ECDSAP256SHA256:
if bits != 256 {
return nil, ErrKeySize
}
case ECDSAP384SHA384:
if bits != 384 {
return nil, ErrKeySize
}
case ED25519:
if bits != 256 {
return nil, ErrKeySize
}
}
switch k.Algorithm {
case DSA, DSANSEC3SHA1:
params := new(dsa.Parameters)
if err := dsa.GenerateParameters(params, rand.Reader, dsa.L1024N160); err != nil {
return nil, err
}
priv := new(dsa.PrivateKey)
priv.PublicKey.Parameters = *params
err := dsa.GenerateKey(priv, rand.Reader)
if err != nil {
return nil, err
}
k.setPublicKeyDSA(params.Q, params.P, params.G, priv.PublicKey.Y)
return priv, nil
case RSAMD5, RSASHA1, RSASHA256, RSASHA512, RSASHA1NSEC3SHA1:
priv, err := rsa.GenerateKey(rand.Reader, bits)
if err != nil {
return nil, err
}
k.setPublicKeyRSA(priv.PublicKey.E, priv.PublicKey.N)
return priv, nil
case ECDSAP256SHA256, ECDSAP384SHA384:
var c elliptic.Curve
switch k.Algorithm {
case ECDSAP256SHA256:
c = elliptic.P256()
case ECDSAP384SHA384:
c = elliptic.P384()
}
priv, err := ecdsa.GenerateKey(c, rand.Reader)
if err != nil {
return nil, err
}
k.setPublicKeyECDSA(priv.PublicKey.X, priv.PublicKey.Y)
return priv, nil
case ED25519:
pub, priv, err := ed25519.GenerateKey(rand.Reader)
if err != nil {
return nil, err
}
k.setPublicKeyED25519(pub)
return priv, nil
default:
return nil, ErrAlg
}
}
// Set the public key (the value E and N)
func (k *DNSKEY) setPublicKeyRSA(_E int, _N *big.Int) bool {
if _E == 0 || _N == nil {
return false
}
buf := exponentToBuf(_E)
buf = append(buf, _N.Bytes()...)
k.PublicKey = toBase64(buf)
return true
}
// Set the public key for Elliptic Curves
func (k *DNSKEY) setPublicKeyECDSA(_X, _Y *big.Int) bool {
if _X == nil || _Y == nil {
return false
}
var intlen int
switch k.Algorithm {
case ECDSAP256SHA256:
intlen = 32
case ECDSAP384SHA384:
intlen = 48
}
k.PublicKey = toBase64(curveToBuf(_X, _Y, intlen))
return true
}
// Set the public key for DSA
func (k *DNSKEY) setPublicKeyDSA(_Q, _P, _G, _Y *big.Int) bool {
if _Q == nil || _P == nil || _G == nil || _Y == nil {
return false
}
buf := dsaToBuf(_Q, _P, _G, _Y)
k.PublicKey = toBase64(buf)
return true
}
// Set the public key for Ed25519
func (k *DNSKEY) setPublicKeyED25519(_K ed25519.PublicKey) bool {
if _K == nil {
return false
}
k.PublicKey = toBase64(_K)
return true
}
// Set the public key (the values E and N) for RSA
// RFC 3110: Section 2. RSA Public KEY Resource Records
func exponentToBuf(_E int) []byte {
var buf []byte
i := big.NewInt(int64(_E)).Bytes()
if len(i) < 256 {
buf = make([]byte, 1, 1+len(i))
buf[0] = uint8(len(i))
} else {
buf = make([]byte, 3, 3+len(i))
buf[0] = 0
buf[1] = uint8(len(i) >> 8)
buf[2] = uint8(len(i))
}
buf = append(buf, i...)
return buf
}
// Set the public key for X and Y for Curve. The two
// values are just concatenated.
func curveToBuf(_X, _Y *big.Int, intlen int) []byte {
buf := intToBytes(_X, intlen)
buf = append(buf, intToBytes(_Y, intlen)...)
return buf
}
// Set the public key for X and Y for Curve. The two
// values are just concatenated.
func dsaToBuf(_Q, _P, _G, _Y *big.Int) []byte {
t := divRoundUp(divRoundUp(_G.BitLen(), 8)-64, 8)
buf := []byte{byte(t)}
buf = append(buf, intToBytes(_Q, 20)...)
buf = append(buf, intToBytes(_P, 64+t*8)...)
buf = append(buf, intToBytes(_G, 64+t*8)...)
buf = append(buf, intToBytes(_Y, 64+t*8)...)
return buf
}

284
vendor/github.com/miekg/dns/dnssec_keyscan.go generated vendored Normal file
View File

@ -0,0 +1,284 @@
package dns
import (
"crypto"
"crypto/dsa"
"crypto/ecdsa"
"crypto/rsa"
"io"
"math/big"
"strconv"
"strings"
"golang.org/x/crypto/ed25519"
)
// NewPrivateKey returns a PrivateKey by parsing the string s.
// s should be in the same form of the BIND private key files.
func (k *DNSKEY) NewPrivateKey(s string) (crypto.PrivateKey, error) {
if s == "" || s[len(s)-1] != '\n' { // We need a closing newline
return k.ReadPrivateKey(strings.NewReader(s+"\n"), "")
}
return k.ReadPrivateKey(strings.NewReader(s), "")
}
// ReadPrivateKey reads a private key from the io.Reader q. The string file is
// only used in error reporting.
// The public key must be known, because some cryptographic algorithms embed
// the public inside the privatekey.
func (k *DNSKEY) ReadPrivateKey(q io.Reader, file string) (crypto.PrivateKey, error) {
m, err := parseKey(q, file)
if m == nil {
return nil, err
}
if _, ok := m["private-key-format"]; !ok {
return nil, ErrPrivKey
}
if m["private-key-format"] != "v1.2" && m["private-key-format"] != "v1.3" {
return nil, ErrPrivKey
}
// TODO(mg): check if the pubkey matches the private key
algo, err := strconv.ParseUint(strings.SplitN(m["algorithm"], " ", 2)[0], 10, 8)
if err != nil {
return nil, ErrPrivKey
}
switch uint8(algo) {
case DSA:
priv, err := readPrivateKeyDSA(m)
if err != nil {
return nil, err
}
pub := k.publicKeyDSA()
if pub == nil {
return nil, ErrKey
}
priv.PublicKey = *pub
return priv, nil
case RSAMD5:
fallthrough
case RSASHA1:
fallthrough
case RSASHA1NSEC3SHA1:
fallthrough
case RSASHA256:
fallthrough
case RSASHA512:
priv, err := readPrivateKeyRSA(m)
if err != nil {
return nil, err
}
pub := k.publicKeyRSA()
if pub == nil {
return nil, ErrKey
}
priv.PublicKey = *pub
return priv, nil
case ECCGOST:
return nil, ErrPrivKey
case ECDSAP256SHA256:
fallthrough
case ECDSAP384SHA384:
priv, err := readPrivateKeyECDSA(m)
if err != nil {
return nil, err
}
pub := k.publicKeyECDSA()
if pub == nil {
return nil, ErrKey
}
priv.PublicKey = *pub
return priv, nil
case ED25519:
return readPrivateKeyED25519(m)
default:
return nil, ErrPrivKey
}
}
// Read a private key (file) string and create a public key. Return the private key.
func readPrivateKeyRSA(m map[string]string) (*rsa.PrivateKey, error) {
p := new(rsa.PrivateKey)
p.Primes = []*big.Int{nil, nil}
for k, v := range m {
switch k {
case "modulus", "publicexponent", "privateexponent", "prime1", "prime2":
v1, err := fromBase64([]byte(v))
if err != nil {
return nil, err
}
switch k {
case "modulus":
p.PublicKey.N = big.NewInt(0)
p.PublicKey.N.SetBytes(v1)
case "publicexponent":
i := big.NewInt(0)
i.SetBytes(v1)
p.PublicKey.E = int(i.Int64()) // int64 should be large enough
case "privateexponent":
p.D = big.NewInt(0)
p.D.SetBytes(v1)
case "prime1":
p.Primes[0] = big.NewInt(0)
p.Primes[0].SetBytes(v1)
case "prime2":
p.Primes[1] = big.NewInt(0)
p.Primes[1].SetBytes(v1)
}
case "exponent1", "exponent2", "coefficient":
// not used in Go (yet)
case "created", "publish", "activate":
// not used in Go (yet)
}
}
return p, nil
}
func readPrivateKeyDSA(m map[string]string) (*dsa.PrivateKey, error) {
p := new(dsa.PrivateKey)
p.X = big.NewInt(0)
for k, v := range m {
switch k {
case "private_value(x)":
v1, err := fromBase64([]byte(v))
if err != nil {
return nil, err
}
p.X.SetBytes(v1)
case "created", "publish", "activate":
/* not used in Go (yet) */
}
}
return p, nil
}
func readPrivateKeyECDSA(m map[string]string) (*ecdsa.PrivateKey, error) {
p := new(ecdsa.PrivateKey)
p.D = big.NewInt(0)
// TODO: validate that the required flags are present
for k, v := range m {
switch k {
case "privatekey":
v1, err := fromBase64([]byte(v))
if err != nil {
return nil, err
}
p.D.SetBytes(v1)
case "created", "publish", "activate":
/* not used in Go (yet) */
}
}
return p, nil
}
func readPrivateKeyED25519(m map[string]string) (ed25519.PrivateKey, error) {
var p ed25519.PrivateKey
// TODO: validate that the required flags are present
for k, v := range m {
switch k {
case "privatekey":
p1, err := fromBase64([]byte(v))
if err != nil {
return nil, err
}
if len(p1) != ed25519.SeedSize {
return nil, ErrPrivKey
}
p = ed25519.NewKeyFromSeed(p1)
case "created", "publish", "activate":
/* not used in Go (yet) */
}
}
return p, nil
}
// parseKey reads a private key from r. It returns a map[string]string,
// with the key-value pairs, or an error when the file is not correct.
func parseKey(r io.Reader, file string) (map[string]string, error) {
s, cancel := scanInit(r)
m := make(map[string]string)
c := make(chan lex)
k := ""
defer func() {
cancel()
// zlexer can send up to two tokens, the next one and possibly 1 remainders.
// Do a non-blocking read.
_, ok := <-c
_, ok = <-c
if !ok {
// too bad
}
}()
// Start the lexer
go klexer(s, c)
for l := range c {
// It should alternate
switch l.value {
case zKey:
k = l.token
case zValue:
if k == "" {
return nil, &ParseError{file, "no private key seen", l}
}
//println("Setting", strings.ToLower(k), "to", l.token, "b")
m[strings.ToLower(k)] = l.token
k = ""
}
}
return m, nil
}
// klexer scans the sourcefile and returns tokens on the channel c.
func klexer(s *scan, c chan lex) {
var l lex
str := "" // Hold the current read text
commt := false
key := true
x, err := s.tokenText()
defer close(c)
for err == nil {
l.column = s.position.Column
l.line = s.position.Line
switch x {
case ':':
if commt {
break
}
l.token = str
if key {
l.value = zKey
c <- l
// Next token is a space, eat it
s.tokenText()
key = false
str = ""
} else {
l.value = zValue
}
case ';':
commt = true
case '\n':
if commt {
// Reset a comment
commt = false
}
l.value = zValue
l.token = str
c <- l
str = ""
commt = false
key = true
default:
if commt {
break
}
str += string(x)
}
x, err = s.tokenText()
}
if len(str) > 0 {
// Send remainder
l.token = str
l.value = zValue
c <- l
}
}

93
vendor/github.com/miekg/dns/dnssec_privkey.go generated vendored Normal file
View File

@ -0,0 +1,93 @@
package dns
import (
"crypto"
"crypto/dsa"
"crypto/ecdsa"
"crypto/rsa"
"math/big"
"strconv"
"golang.org/x/crypto/ed25519"
)
const format = "Private-key-format: v1.3\n"
// PrivateKeyString converts a PrivateKey to a string. This string has the same
// format as the private-key-file of BIND9 (Private-key-format: v1.3).
// It needs some info from the key (the algorithm), so its a method of the DNSKEY
// It supports rsa.PrivateKey, ecdsa.PrivateKey and dsa.PrivateKey
func (r *DNSKEY) PrivateKeyString(p crypto.PrivateKey) string {
algorithm := strconv.Itoa(int(r.Algorithm))
algorithm += " (" + AlgorithmToString[r.Algorithm] + ")"
switch p := p.(type) {
case *rsa.PrivateKey:
modulus := toBase64(p.PublicKey.N.Bytes())
e := big.NewInt(int64(p.PublicKey.E))
publicExponent := toBase64(e.Bytes())
privateExponent := toBase64(p.D.Bytes())
prime1 := toBase64(p.Primes[0].Bytes())
prime2 := toBase64(p.Primes[1].Bytes())
// Calculate Exponent1/2 and Coefficient as per: http://en.wikipedia.org/wiki/RSA#Using_the_Chinese_remainder_algorithm
// and from: http://code.google.com/p/go/issues/detail?id=987
one := big.NewInt(1)
p1 := big.NewInt(0).Sub(p.Primes[0], one)
q1 := big.NewInt(0).Sub(p.Primes[1], one)
exp1 := big.NewInt(0).Mod(p.D, p1)
exp2 := big.NewInt(0).Mod(p.D, q1)
coeff := big.NewInt(0).ModInverse(p.Primes[1], p.Primes[0])
exponent1 := toBase64(exp1.Bytes())
exponent2 := toBase64(exp2.Bytes())
coefficient := toBase64(coeff.Bytes())
return format +
"Algorithm: " + algorithm + "\n" +
"Modulus: " + modulus + "\n" +
"PublicExponent: " + publicExponent + "\n" +
"PrivateExponent: " + privateExponent + "\n" +
"Prime1: " + prime1 + "\n" +
"Prime2: " + prime2 + "\n" +
"Exponent1: " + exponent1 + "\n" +
"Exponent2: " + exponent2 + "\n" +
"Coefficient: " + coefficient + "\n"
case *ecdsa.PrivateKey:
var intlen int
switch r.Algorithm {
case ECDSAP256SHA256:
intlen = 32
case ECDSAP384SHA384:
intlen = 48
}
private := toBase64(intToBytes(p.D, intlen))
return format +
"Algorithm: " + algorithm + "\n" +
"PrivateKey: " + private + "\n"
case *dsa.PrivateKey:
T := divRoundUp(divRoundUp(p.PublicKey.Parameters.G.BitLen(), 8)-64, 8)
prime := toBase64(intToBytes(p.PublicKey.Parameters.P, 64+T*8))
subprime := toBase64(intToBytes(p.PublicKey.Parameters.Q, 20))
base := toBase64(intToBytes(p.PublicKey.Parameters.G, 64+T*8))
priv := toBase64(intToBytes(p.X, 20))
pub := toBase64(intToBytes(p.PublicKey.Y, 64+T*8))
return format +
"Algorithm: " + algorithm + "\n" +
"Prime(p): " + prime + "\n" +
"Subprime(q): " + subprime + "\n" +
"Base(g): " + base + "\n" +
"Private_value(x): " + priv + "\n" +
"Public_value(y): " + pub + "\n"
case ed25519.PrivateKey:
private := toBase64(p.Seed())
return format +
"Algorithm: " + algorithm + "\n" +
"PrivateKey: " + private + "\n"
default:
return ""
}
}

272
vendor/github.com/miekg/dns/doc.go generated vendored Normal file
View File

@ -0,0 +1,272 @@
/*
Package dns implements a full featured interface to the Domain Name System.
Server- and client-side programming is supported.
The package allows complete control over what is sent out to the DNS. The package
API follows the less-is-more principle, by presenting a small, clean interface.
The package dns supports (asynchronous) querying/replying, incoming/outgoing zone transfers,
TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing.
Note that domain names MUST be fully qualified, before sending them, unqualified
names in a message will result in a packing failure.
Resource records are native types. They are not stored in wire format.
Basic usage pattern for creating a new resource record:
r := new(dns.MX)
r.Hdr = dns.RR_Header{Name: "miek.nl.", Rrtype: dns.TypeMX,
Class: dns.ClassINET, Ttl: 3600}
r.Preference = 10
r.Mx = "mx.miek.nl."
Or directly from a string:
mx, err := dns.NewRR("miek.nl. 3600 IN MX 10 mx.miek.nl.")
Or when the default origin (.) and TTL (3600) and class (IN) suit you:
mx, err := dns.NewRR("miek.nl MX 10 mx.miek.nl")
Or even:
mx, err := dns.NewRR("$ORIGIN nl.\nmiek 1H IN MX 10 mx.miek")
In the DNS messages are exchanged, these messages contain resource
records (sets). Use pattern for creating a message:
m := new(dns.Msg)
m.SetQuestion("miek.nl.", dns.TypeMX)
Or when not certain if the domain name is fully qualified:
m.SetQuestion(dns.Fqdn("miek.nl"), dns.TypeMX)
The message m is now a message with the question section set to ask
the MX records for the miek.nl. zone.
The following is slightly more verbose, but more flexible:
m1 := new(dns.Msg)
m1.Id = dns.Id()
m1.RecursionDesired = true
m1.Question = make([]dns.Question, 1)
m1.Question[0] = dns.Question{"miek.nl.", dns.TypeMX, dns.ClassINET}
After creating a message it can be sent.
Basic use pattern for synchronous querying the DNS at a
server configured on 127.0.0.1 and port 53:
c := new(dns.Client)
in, rtt, err := c.Exchange(m1, "127.0.0.1:53")
Suppressing multiple outstanding queries (with the same question, type and
class) is as easy as setting:
c.SingleInflight = true
More advanced options are available using a net.Dialer and the corresponding API.
For example it is possible to set a timeout, or to specify a source IP address
and port to use for the connection:
c := new(dns.Client)
laddr := net.UDPAddr{
IP: net.ParseIP("[::1]"),
Port: 12345,
Zone: "",
}
c.Dialer := &net.Dialer{
Timeout: 200 * time.Millisecond,
LocalAddr: &laddr,
}
in, rtt, err := c.Exchange(m1, "8.8.8.8:53")
If these "advanced" features are not needed, a simple UDP query can be sent,
with:
in, err := dns.Exchange(m1, "127.0.0.1:53")
When this functions returns you will get dns message. A dns message consists
out of four sections.
The question section: in.Question, the answer section: in.Answer,
the authority section: in.Ns and the additional section: in.Extra.
Each of these sections (except the Question section) contain a []RR. Basic
use pattern for accessing the rdata of a TXT RR as the first RR in
the Answer section:
if t, ok := in.Answer[0].(*dns.TXT); ok {
// do something with t.Txt
}
Domain Name and TXT Character String Representations
Both domain names and TXT character strings are converted to presentation
form both when unpacked and when converted to strings.
For TXT character strings, tabs, carriage returns and line feeds will be
converted to \t, \r and \n respectively. Back slashes and quotations marks
will be escaped. Bytes below 32 and above 127 will be converted to \DDD
form.
For domain names, in addition to the above rules brackets, periods,
spaces, semicolons and the at symbol are escaped.
DNSSEC
DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It
uses public key cryptography to sign resource records. The
public keys are stored in DNSKEY records and the signatures in RRSIG records.
Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit
to a request.
m := new(dns.Msg)
m.SetEdns0(4096, true)
Signature generation, signature verification and key generation are all supported.
DYNAMIC UPDATES
Dynamic updates reuses the DNS message format, but renames three of
the sections. Question is Zone, Answer is Prerequisite, Authority is
Update, only the Additional is not renamed. See RFC 2136 for the gory details.
You can set a rather complex set of rules for the existence of absence of
certain resource records or names in a zone to specify if resource records
should be added or removed. The table from RFC 2136 supplemented with the Go
DNS function shows which functions exist to specify the prerequisites.
3.2.4 - Table Of Metavalues Used In Prerequisite Section
CLASS TYPE RDATA Meaning Function
--------------------------------------------------------------
ANY ANY empty Name is in use dns.NameUsed
ANY rrset empty RRset exists (value indep) dns.RRsetUsed
NONE ANY empty Name is not in use dns.NameNotUsed
NONE rrset empty RRset does not exist dns.RRsetNotUsed
zone rrset rr RRset exists (value dep) dns.Used
The prerequisite section can also be left empty.
If you have decided on the prerequisites you can tell what RRs should
be added or deleted. The next table shows the options you have and
what functions to call.
3.4.2.6 - Table Of Metavalues Used In Update Section
CLASS TYPE RDATA Meaning Function
---------------------------------------------------------------
ANY ANY empty Delete all RRsets from name dns.RemoveName
ANY rrset empty Delete an RRset dns.RemoveRRset
NONE rrset rr Delete an RR from RRset dns.Remove
zone rrset rr Add to an RRset dns.Insert
TRANSACTION SIGNATURE
An TSIG or transaction signature adds a HMAC TSIG record to each message sent.
The supported algorithms include: HmacMD5, HmacSHA1, HmacSHA256 and HmacSHA512.
Basic use pattern when querying with a TSIG name "axfr." (note that these key names
must be fully qualified - as they are domain names) and the base64 secret
"so6ZGir4GPAqINNh9U5c3A==":
If an incoming message contains a TSIG record it MUST be the last record in
the additional section (RFC2845 3.2). This means that you should make the
call to SetTsig last, right before executing the query. If you make any
changes to the RRset after calling SetTsig() the signature will be incorrect.
c := new(dns.Client)
c.TsigSecret = map[string]string{"axfr.": "so6ZGir4GPAqINNh9U5c3A=="}
m := new(dns.Msg)
m.SetQuestion("miek.nl.", dns.TypeMX)
m.SetTsig("axfr.", dns.HmacMD5, 300, time.Now().Unix())
...
// When sending the TSIG RR is calculated and filled in before sending
When requesting an zone transfer (almost all TSIG usage is when requesting zone transfers), with
TSIG, this is the basic use pattern. In this example we request an AXFR for
miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A=="
and using the server 176.58.119.54:
t := new(dns.Transfer)
m := new(dns.Msg)
t.TsigSecret = map[string]string{"axfr.": "so6ZGir4GPAqINNh9U5c3A=="}
m.SetAxfr("miek.nl.")
m.SetTsig("axfr.", dns.HmacMD5, 300, time.Now().Unix())
c, err := t.In(m, "176.58.119.54:53")
for r := range c { ... }
You can now read the records from the transfer as they come in. Each envelope is checked with TSIG.
If something is not correct an error is returned.
Basic use pattern validating and replying to a message that has TSIG set.
server := &dns.Server{Addr: ":53", Net: "udp"}
server.TsigSecret = map[string]string{"axfr.": "so6ZGir4GPAqINNh9U5c3A=="}
go server.ListenAndServe()
dns.HandleFunc(".", handleRequest)
func handleRequest(w dns.ResponseWriter, r *dns.Msg) {
m := new(dns.Msg)
m.SetReply(r)
if r.IsTsig() != nil {
if w.TsigStatus() == nil {
// *Msg r has an TSIG record and it was validated
m.SetTsig("axfr.", dns.HmacMD5, 300, time.Now().Unix())
} else {
// *Msg r has an TSIG records and it was not valided
}
}
w.WriteMsg(m)
}
PRIVATE RRS
RFC 6895 sets aside a range of type codes for private use. This range
is 65,280 - 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these
can be used, before requesting an official type code from IANA.
see http://miek.nl/2014/September/21/idn-and-private-rr-in-go-dns/ for more
information.
EDNS0
EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated
by RFC 6891. It defines an new RR type, the OPT RR, which is then completely
abused.
Basic use pattern for creating an (empty) OPT RR:
o := new(dns.OPT)
o.Hdr.Name = "." // MUST be the root zone, per definition.
o.Hdr.Rrtype = dns.TypeOPT
The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891)
interfaces. Currently only a few have been standardized: EDNS0_NSID
(RFC 5001) and EDNS0_SUBNET (draft-vandergaast-edns-client-subnet-02). Note
that these options may be combined in an OPT RR.
Basic use pattern for a server to check if (and which) options are set:
// o is a dns.OPT
for _, s := range o.Option {
switch e := s.(type) {
case *dns.EDNS0_NSID:
// do stuff with e.Nsid
case *dns.EDNS0_SUBNET:
// access e.Family, e.Address, etc.
}
}
SIG(0)
From RFC 2931:
SIG(0) provides protection for DNS transactions and requests ....
... protection for glue records, DNS requests, protection for message headers
on requests and responses, and protection of the overall integrity of a response.
It works like TSIG, except that SIG(0) uses public key cryptography, instead of the shared
secret approach in TSIG.
Supported algorithms: DSA, ECDSAP256SHA256, ECDSAP384SHA384, RSASHA1, RSASHA256 and
RSASHA512.
Signing subsequent messages in multi-message sessions is not implemented.
*/
package dns

25
vendor/github.com/miekg/dns/duplicate.go generated vendored Normal file
View File

@ -0,0 +1,25 @@
package dns
//go:generate go run duplicate_generate.go
// IsDuplicate checks of r1 and r2 are duplicates of each other, excluding the TTL.
// So this means the header data is equal *and* the RDATA is the same. Return true
// is so, otherwise false.
// It's is a protocol violation to have identical RRs in a message.
func IsDuplicate(r1, r2 RR) bool {
if r1.Header().Class != r2.Header().Class {
return false
}
if r1.Header().Rrtype != r2.Header().Rrtype {
return false
}
if !isDulicateName(r1.Header().Name, r2.Header().Name) {
return false
}
// ignore TTL
return isDuplicateRdata(r1, r2)
}
// isDulicateName checks if the domain names s1 and s2 are equal.
func isDulicateName(s1, s2 string) bool { return equal(s1, s2) }

158
vendor/github.com/miekg/dns/duplicate_generate.go generated vendored Normal file
View File

@ -0,0 +1,158 @@
//+build ignore
// types_generate.go is meant to run with go generate. It will use
// go/{importer,types} to track down all the RR struct types. Then for each type
// it will generate conversion tables (TypeToRR and TypeToString) and banal
// methods (len, Header, copy) based on the struct tags. The generated source is
// written to ztypes.go, and is meant to be checked into git.
package main
import (
"bytes"
"fmt"
"go/format"
"go/importer"
"go/types"
"log"
"os"
)
var packageHdr = `
// Code generated by "go run duplicate_generate.go"; DO NOT EDIT.
package dns
`
func getTypeStruct(t types.Type, scope *types.Scope) (*types.Struct, bool) {
st, ok := t.Underlying().(*types.Struct)
if !ok {
return nil, false
}
if st.Field(0).Type() == scope.Lookup("RR_Header").Type() {
return st, false
}
if st.Field(0).Anonymous() {
st, _ := getTypeStruct(st.Field(0).Type(), scope)
return st, true
}
return nil, false
}
func main() {
// Import and type-check the package
pkg, err := importer.Default().Import("github.com/miekg/dns")
fatalIfErr(err)
scope := pkg.Scope()
// Collect actual types (*X)
var namedTypes []string
for _, name := range scope.Names() {
o := scope.Lookup(name)
if o == nil || !o.Exported() {
continue
}
if st, _ := getTypeStruct(o.Type(), scope); st == nil {
continue
}
if name == "PrivateRR" || name == "RFC3597" {
continue
}
if name == "OPT" || name == "ANY" || name == "IXFR" || name == "AXFR" {
continue
}
namedTypes = append(namedTypes, o.Name())
}
b := &bytes.Buffer{}
b.WriteString(packageHdr)
// Generate the giant switch that calls the correct function for each type.
fmt.Fprint(b, "// isDuplicateRdata calls the rdata specific functions\n")
fmt.Fprint(b, "func isDuplicateRdata(r1, r2 RR) bool {\n")
fmt.Fprint(b, "switch r1.Header().Rrtype {\n")
for _, name := range namedTypes {
o := scope.Lookup(name)
_, isEmbedded := getTypeStruct(o.Type(), scope)
if isEmbedded {
continue
}
fmt.Fprintf(b, "case Type%s:\nreturn isDuplicate%s(r1.(*%s), r2.(*%s))\n", name, name, name, name)
}
fmt.Fprintf(b, "}\nreturn false\n}\n")
// Generate the duplicate check for each type.
fmt.Fprint(b, "// isDuplicate() functions\n\n")
for _, name := range namedTypes {
o := scope.Lookup(name)
st, isEmbedded := getTypeStruct(o.Type(), scope)
if isEmbedded {
continue
}
fmt.Fprintf(b, "func isDuplicate%s(r1, r2 *%s) bool {\n", name, name)
for i := 1; i < st.NumFields(); i++ {
field := st.Field(i).Name()
o2 := func(s string) { fmt.Fprintf(b, s+"\n", field, field) }
o3 := func(s string) { fmt.Fprintf(b, s+"\n", field, field, field) }
// For some reason, a and aaaa don't pop up as *types.Slice here (mostly like because the are
// *indirectly* defined as a slice in the net package).
if _, ok := st.Field(i).Type().(*types.Slice); ok || st.Tag(i) == `dns:"a"` || st.Tag(i) == `dns:"aaaa"` {
o2("if len(r1.%s) != len(r2.%s) {\nreturn false\n}")
if st.Tag(i) == `dns:"cdomain-name"` || st.Tag(i) == `dns:"domain-name"` {
o3(`for i := 0; i < len(r1.%s); i++ {
if !isDulicateName(r1.%s[i], r2.%s[i]) {
return false
}
}`)
continue
}
o3(`for i := 0; i < len(r1.%s); i++ {
if r1.%s[i] != r2.%s[i] {
return false
}
}`)
continue
}
switch st.Tag(i) {
case `dns:"-"`:
// ignored
case `dns:"cdomain-name"`, `dns:"domain-name"`:
o2("if !isDulicateName(r1.%s, r2.%s) {\nreturn false\n}")
default:
o2("if r1.%s != r2.%s {\nreturn false\n}")
}
}
fmt.Fprintf(b, "return true\n}\n\n")
}
// gofmt
res, err := format.Source(b.Bytes())
if err != nil {
b.WriteTo(os.Stderr)
log.Fatal(err)
}
// write result
f, err := os.Create("zduplicate.go")
fatalIfErr(err)
defer f.Close()
f.Write(res)
}
func fatalIfErr(err error) {
if err != nil {
log.Fatal(err)
}
}

630
vendor/github.com/miekg/dns/edns.go generated vendored Normal file
View File

@ -0,0 +1,630 @@
package dns
import (
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"net"
"strconv"
)
// EDNS0 Option codes.
const (
EDNS0LLQ = 0x1 // long lived queries: http://tools.ietf.org/html/draft-sekar-dns-llq-01
EDNS0UL = 0x2 // update lease draft: http://files.dns-sd.org/draft-sekar-dns-ul.txt
EDNS0NSID = 0x3 // nsid (See RFC 5001)
EDNS0DAU = 0x5 // DNSSEC Algorithm Understood
EDNS0DHU = 0x6 // DS Hash Understood
EDNS0N3U = 0x7 // NSEC3 Hash Understood
EDNS0SUBNET = 0x8 // client-subnet (See RFC 7871)
EDNS0EXPIRE = 0x9 // EDNS0 expire
EDNS0COOKIE = 0xa // EDNS0 Cookie
EDNS0TCPKEEPALIVE = 0xb // EDNS0 tcp keep alive (See RFC 7828)
EDNS0PADDING = 0xc // EDNS0 padding (See RFC 7830)
EDNS0LOCALSTART = 0xFDE9 // Beginning of range reserved for local/experimental use (See RFC 6891)
EDNS0LOCALEND = 0xFFFE // End of range reserved for local/experimental use (See RFC 6891)
_DO = 1 << 15 // DNSSEC OK
)
// OPT is the EDNS0 RR appended to messages to convey extra (meta) information.
// See RFC 6891.
type OPT struct {
Hdr RR_Header
Option []EDNS0 `dns:"opt"`
}
func (rr *OPT) String() string {
s := "\n;; OPT PSEUDOSECTION:\n; EDNS: version " + strconv.Itoa(int(rr.Version())) + "; "
if rr.Do() {
s += "flags: do; "
} else {
s += "flags: ; "
}
s += "udp: " + strconv.Itoa(int(rr.UDPSize()))
for _, o := range rr.Option {
switch o.(type) {
case *EDNS0_NSID:
s += "\n; NSID: " + o.String()
h, e := o.pack()
var r string
if e == nil {
for _, c := range h {
r += "(" + string(c) + ")"
}
s += " " + r
}
case *EDNS0_SUBNET:
s += "\n; SUBNET: " + o.String()
case *EDNS0_COOKIE:
s += "\n; COOKIE: " + o.String()
case *EDNS0_UL:
s += "\n; UPDATE LEASE: " + o.String()
case *EDNS0_LLQ:
s += "\n; LONG LIVED QUERIES: " + o.String()
case *EDNS0_DAU:
s += "\n; DNSSEC ALGORITHM UNDERSTOOD: " + o.String()
case *EDNS0_DHU:
s += "\n; DS HASH UNDERSTOOD: " + o.String()
case *EDNS0_N3U:
s += "\n; NSEC3 HASH UNDERSTOOD: " + o.String()
case *EDNS0_LOCAL:
s += "\n; LOCAL OPT: " + o.String()
case *EDNS0_PADDING:
s += "\n; PADDING: " + o.String()
}
}
return s
}
func (rr *OPT) len() int {
l := rr.Hdr.len()
for i := 0; i < len(rr.Option); i++ {
l += 4 // Account for 2-byte option code and 2-byte option length.
lo, _ := rr.Option[i].pack()
l += len(lo)
}
return l
}
// return the old value -> delete SetVersion?
// Version returns the EDNS version used. Only zero is defined.
func (rr *OPT) Version() uint8 {
return uint8(rr.Hdr.Ttl & 0x00FF0000 >> 16)
}
// SetVersion sets the version of EDNS. This is usually zero.
func (rr *OPT) SetVersion(v uint8) {
rr.Hdr.Ttl = rr.Hdr.Ttl&0xFF00FFFF | uint32(v)<<16
}
// ExtendedRcode returns the EDNS extended RCODE field (the upper 8 bits of the TTL).
func (rr *OPT) ExtendedRcode() int {
return int(rr.Hdr.Ttl&0xFF000000>>24) + 15
}
// SetExtendedRcode sets the EDNS extended RCODE field.
func (rr *OPT) SetExtendedRcode(v uint8) {
if v < RcodeBadVers { // Smaller than 16.. Use the 4 bits you have!
return
}
rr.Hdr.Ttl = rr.Hdr.Ttl&0x00FFFFFF | uint32(v-15)<<24
}
// UDPSize returns the UDP buffer size.
func (rr *OPT) UDPSize() uint16 {
return rr.Hdr.Class
}
// SetUDPSize sets the UDP buffer size.
func (rr *OPT) SetUDPSize(size uint16) {
rr.Hdr.Class = size
}
// Do returns the value of the DO (DNSSEC OK) bit.
func (rr *OPT) Do() bool {
return rr.Hdr.Ttl&_DO == _DO
}
// SetDo sets the DO (DNSSEC OK) bit.
// If we pass an argument, set the DO bit to that value.
// It is possible to pass 2 or more arguments. Any arguments after the 1st is silently ignored.
func (rr *OPT) SetDo(do ...bool) {
if len(do) == 1 {
if do[0] {
rr.Hdr.Ttl |= _DO
} else {
rr.Hdr.Ttl &^= _DO
}
} else {
rr.Hdr.Ttl |= _DO
}
}
// EDNS0 defines an EDNS0 Option. An OPT RR can have multiple options appended to it.
type EDNS0 interface {
// Option returns the option code for the option.
Option() uint16
// pack returns the bytes of the option data.
pack() ([]byte, error)
// unpack sets the data as found in the buffer. Is also sets
// the length of the slice as the length of the option data.
unpack([]byte) error
// String returns the string representation of the option.
String() string
}
// EDNS0_NSID option is used to retrieve a nameserver
// identifier. When sending a request Nsid must be set to the empty string
// The identifier is an opaque string encoded as hex.
// Basic use pattern for creating an nsid option:
//
// o := new(dns.OPT)
// o.Hdr.Name = "."
// o.Hdr.Rrtype = dns.TypeOPT
// e := new(dns.EDNS0_NSID)
// e.Code = dns.EDNS0NSID
// e.Nsid = "AA"
// o.Option = append(o.Option, e)
type EDNS0_NSID struct {
Code uint16 // Always EDNS0NSID
Nsid string // This string needs to be hex encoded
}
func (e *EDNS0_NSID) pack() ([]byte, error) {
h, err := hex.DecodeString(e.Nsid)
if err != nil {
return nil, err
}
return h, nil
}
// Option implements the EDNS0 interface.
func (e *EDNS0_NSID) Option() uint16 { return EDNS0NSID } // Option returns the option code.
func (e *EDNS0_NSID) unpack(b []byte) error { e.Nsid = hex.EncodeToString(b); return nil }
func (e *EDNS0_NSID) String() string { return string(e.Nsid) }
// EDNS0_SUBNET is the subnet option that is used to give the remote nameserver
// an idea of where the client lives. See RFC 7871. It can then give back a different
// answer depending on the location or network topology.
// Basic use pattern for creating an subnet option:
//
// o := new(dns.OPT)
// o.Hdr.Name = "."
// o.Hdr.Rrtype = dns.TypeOPT
// e := new(dns.EDNS0_SUBNET)
// e.Code = dns.EDNS0SUBNET
// e.Family = 1 // 1 for IPv4 source address, 2 for IPv6
// e.SourceNetmask = 32 // 32 for IPV4, 128 for IPv6
// e.SourceScope = 0
// e.Address = net.ParseIP("127.0.0.1").To4() // for IPv4
// // e.Address = net.ParseIP("2001:7b8:32a::2") // for IPV6
// o.Option = append(o.Option, e)
//
// This code will parse all the available bits when unpacking (up to optlen).
// When packing it will apply SourceNetmask. If you need more advanced logic,
// patches welcome and good luck.
type EDNS0_SUBNET struct {
Code uint16 // Always EDNS0SUBNET
Family uint16 // 1 for IP, 2 for IP6
SourceNetmask uint8
SourceScope uint8
Address net.IP
}
// Option implements the EDNS0 interface.
func (e *EDNS0_SUBNET) Option() uint16 { return EDNS0SUBNET }
func (e *EDNS0_SUBNET) pack() ([]byte, error) {
b := make([]byte, 4)
binary.BigEndian.PutUint16(b[0:], e.Family)
b[2] = e.SourceNetmask
b[3] = e.SourceScope
switch e.Family {
case 0:
// "dig" sets AddressFamily to 0 if SourceNetmask is also 0
// We might don't need to complain either
if e.SourceNetmask != 0 {
return nil, errors.New("dns: bad address family")
}
case 1:
if e.SourceNetmask > net.IPv4len*8 {
return nil, errors.New("dns: bad netmask")
}
if len(e.Address.To4()) != net.IPv4len {
return nil, errors.New("dns: bad address")
}
ip := e.Address.To4().Mask(net.CIDRMask(int(e.SourceNetmask), net.IPv4len*8))
needLength := (e.SourceNetmask + 8 - 1) / 8 // division rounding up
b = append(b, ip[:needLength]...)
case 2:
if e.SourceNetmask > net.IPv6len*8 {
return nil, errors.New("dns: bad netmask")
}
if len(e.Address) != net.IPv6len {
return nil, errors.New("dns: bad address")
}
ip := e.Address.Mask(net.CIDRMask(int(e.SourceNetmask), net.IPv6len*8))
needLength := (e.SourceNetmask + 8 - 1) / 8 // division rounding up
b = append(b, ip[:needLength]...)
default:
return nil, errors.New("dns: bad address family")
}
return b, nil
}
func (e *EDNS0_SUBNET) unpack(b []byte) error {
if len(b) < 4 {
return ErrBuf
}
e.Family = binary.BigEndian.Uint16(b)
e.SourceNetmask = b[2]
e.SourceScope = b[3]
switch e.Family {
case 0:
// "dig" sets AddressFamily to 0 if SourceNetmask is also 0
// It's okay to accept such a packet
if e.SourceNetmask != 0 {
return errors.New("dns: bad address family")
}
e.Address = net.IPv4(0, 0, 0, 0)
case 1:
if e.SourceNetmask > net.IPv4len*8 || e.SourceScope > net.IPv4len*8 {
return errors.New("dns: bad netmask")
}
addr := make([]byte, net.IPv4len)
for i := 0; i < net.IPv4len && 4+i < len(b); i++ {
addr[i] = b[4+i]
}
e.Address = net.IPv4(addr[0], addr[1], addr[2], addr[3])
case 2:
if e.SourceNetmask > net.IPv6len*8 || e.SourceScope > net.IPv6len*8 {
return errors.New("dns: bad netmask")
}
addr := make([]byte, net.IPv6len)
for i := 0; i < net.IPv6len && 4+i < len(b); i++ {
addr[i] = b[4+i]
}
e.Address = net.IP{addr[0], addr[1], addr[2], addr[3], addr[4],
addr[5], addr[6], addr[7], addr[8], addr[9], addr[10],
addr[11], addr[12], addr[13], addr[14], addr[15]}
default:
return errors.New("dns: bad address family")
}
return nil
}
func (e *EDNS0_SUBNET) String() (s string) {
if e.Address == nil {
s = "<nil>"
} else if e.Address.To4() != nil {
s = e.Address.String()
} else {
s = "[" + e.Address.String() + "]"
}
s += "/" + strconv.Itoa(int(e.SourceNetmask)) + "/" + strconv.Itoa(int(e.SourceScope))
return
}
// The EDNS0_COOKIE option is used to add a DNS Cookie to a message.
//
// o := new(dns.OPT)
// o.Hdr.Name = "."
// o.Hdr.Rrtype = dns.TypeOPT
// e := new(dns.EDNS0_COOKIE)
// e.Code = dns.EDNS0COOKIE
// e.Cookie = "24a5ac.."
// o.Option = append(o.Option, e)
//
// The Cookie field consists out of a client cookie (RFC 7873 Section 4), that is
// always 8 bytes. It may then optionally be followed by the server cookie. The server
// cookie is of variable length, 8 to a maximum of 32 bytes. In other words:
//
// cCookie := o.Cookie[:16]
// sCookie := o.Cookie[16:]
//
// There is no guarantee that the Cookie string has a specific length.
type EDNS0_COOKIE struct {
Code uint16 // Always EDNS0COOKIE
Cookie string // Hex-encoded cookie data
}
func (e *EDNS0_COOKIE) pack() ([]byte, error) {
h, err := hex.DecodeString(e.Cookie)
if err != nil {
return nil, err
}
return h, nil
}
// Option implements the EDNS0 interface.
func (e *EDNS0_COOKIE) Option() uint16 { return EDNS0COOKIE }
func (e *EDNS0_COOKIE) unpack(b []byte) error { e.Cookie = hex.EncodeToString(b); return nil }
func (e *EDNS0_COOKIE) String() string { return e.Cookie }
// The EDNS0_UL (Update Lease) (draft RFC) option is used to tell the server to set
// an expiration on an update RR. This is helpful for clients that cannot clean
// up after themselves. This is a draft RFC and more information can be found at
// http://files.dns-sd.org/draft-sekar-dns-ul.txt
//
// o := new(dns.OPT)
// o.Hdr.Name = "."
// o.Hdr.Rrtype = dns.TypeOPT
// e := new(dns.EDNS0_UL)
// e.Code = dns.EDNS0UL
// e.Lease = 120 // in seconds
// o.Option = append(o.Option, e)
type EDNS0_UL struct {
Code uint16 // Always EDNS0UL
Lease uint32
}
// Option implements the EDNS0 interface.
func (e *EDNS0_UL) Option() uint16 { return EDNS0UL }
func (e *EDNS0_UL) String() string { return strconv.FormatUint(uint64(e.Lease), 10) }
// Copied: http://golang.org/src/pkg/net/dnsmsg.go
func (e *EDNS0_UL) pack() ([]byte, error) {
b := make([]byte, 4)
binary.BigEndian.PutUint32(b, e.Lease)
return b, nil
}
func (e *EDNS0_UL) unpack(b []byte) error {
if len(b) < 4 {
return ErrBuf
}
e.Lease = binary.BigEndian.Uint32(b)
return nil
}
// EDNS0_LLQ stands for Long Lived Queries: http://tools.ietf.org/html/draft-sekar-dns-llq-01
// Implemented for completeness, as the EDNS0 type code is assigned.
type EDNS0_LLQ struct {
Code uint16 // Always EDNS0LLQ
Version uint16
Opcode uint16
Error uint16
Id uint64
LeaseLife uint32
}
// Option implements the EDNS0 interface.
func (e *EDNS0_LLQ) Option() uint16 { return EDNS0LLQ }
func (e *EDNS0_LLQ) pack() ([]byte, error) {
b := make([]byte, 18)
binary.BigEndian.PutUint16(b[0:], e.Version)
binary.BigEndian.PutUint16(b[2:], e.Opcode)
binary.BigEndian.PutUint16(b[4:], e.Error)
binary.BigEndian.PutUint64(b[6:], e.Id)
binary.BigEndian.PutUint32(b[14:], e.LeaseLife)
return b, nil
}
func (e *EDNS0_LLQ) unpack(b []byte) error {
if len(b) < 18 {
return ErrBuf
}
e.Version = binary.BigEndian.Uint16(b[0:])
e.Opcode = binary.BigEndian.Uint16(b[2:])
e.Error = binary.BigEndian.Uint16(b[4:])
e.Id = binary.BigEndian.Uint64(b[6:])
e.LeaseLife = binary.BigEndian.Uint32(b[14:])
return nil
}
func (e *EDNS0_LLQ) String() string {
s := strconv.FormatUint(uint64(e.Version), 10) + " " + strconv.FormatUint(uint64(e.Opcode), 10) +
" " + strconv.FormatUint(uint64(e.Error), 10) + " " + strconv.FormatUint(uint64(e.Id), 10) +
" " + strconv.FormatUint(uint64(e.LeaseLife), 10)
return s
}
// EDNS0_DUA implements the EDNS0 "DNSSEC Algorithm Understood" option. See RFC 6975.
type EDNS0_DAU struct {
Code uint16 // Always EDNS0DAU
AlgCode []uint8
}
// Option implements the EDNS0 interface.
func (e *EDNS0_DAU) Option() uint16 { return EDNS0DAU }
func (e *EDNS0_DAU) pack() ([]byte, error) { return e.AlgCode, nil }
func (e *EDNS0_DAU) unpack(b []byte) error { e.AlgCode = b; return nil }
func (e *EDNS0_DAU) String() string {
s := ""
for i := 0; i < len(e.AlgCode); i++ {
if a, ok := AlgorithmToString[e.AlgCode[i]]; ok {
s += " " + a
} else {
s += " " + strconv.Itoa(int(e.AlgCode[i]))
}
}
return s
}
// EDNS0_DHU implements the EDNS0 "DS Hash Understood" option. See RFC 6975.
type EDNS0_DHU struct {
Code uint16 // Always EDNS0DHU
AlgCode []uint8
}
// Option implements the EDNS0 interface.
func (e *EDNS0_DHU) Option() uint16 { return EDNS0DHU }
func (e *EDNS0_DHU) pack() ([]byte, error) { return e.AlgCode, nil }
func (e *EDNS0_DHU) unpack(b []byte) error { e.AlgCode = b; return nil }
func (e *EDNS0_DHU) String() string {
s := ""
for i := 0; i < len(e.AlgCode); i++ {
if a, ok := HashToString[e.AlgCode[i]]; ok {
s += " " + a
} else {
s += " " + strconv.Itoa(int(e.AlgCode[i]))
}
}
return s
}
// EDNS0_N3U implements the EDNS0 "NSEC3 Hash Understood" option. See RFC 6975.
type EDNS0_N3U struct {
Code uint16 // Always EDNS0N3U
AlgCode []uint8
}
// Option implements the EDNS0 interface.
func (e *EDNS0_N3U) Option() uint16 { return EDNS0N3U }
func (e *EDNS0_N3U) pack() ([]byte, error) { return e.AlgCode, nil }
func (e *EDNS0_N3U) unpack(b []byte) error { e.AlgCode = b; return nil }
func (e *EDNS0_N3U) String() string {
// Re-use the hash map
s := ""
for i := 0; i < len(e.AlgCode); i++ {
if a, ok := HashToString[e.AlgCode[i]]; ok {
s += " " + a
} else {
s += " " + strconv.Itoa(int(e.AlgCode[i]))
}
}
return s
}
// EDNS0_EXPIRE implementes the EDNS0 option as described in RFC 7314.
type EDNS0_EXPIRE struct {
Code uint16 // Always EDNS0EXPIRE
Expire uint32
}
// Option implements the EDNS0 interface.
func (e *EDNS0_EXPIRE) Option() uint16 { return EDNS0EXPIRE }
func (e *EDNS0_EXPIRE) String() string { return strconv.FormatUint(uint64(e.Expire), 10) }
func (e *EDNS0_EXPIRE) pack() ([]byte, error) {
b := make([]byte, 4)
b[0] = byte(e.Expire >> 24)
b[1] = byte(e.Expire >> 16)
b[2] = byte(e.Expire >> 8)
b[3] = byte(e.Expire)
return b, nil
}
func (e *EDNS0_EXPIRE) unpack(b []byte) error {
if len(b) < 4 {
return ErrBuf
}
e.Expire = binary.BigEndian.Uint32(b)
return nil
}
// The EDNS0_LOCAL option is used for local/experimental purposes. The option
// code is recommended to be within the range [EDNS0LOCALSTART, EDNS0LOCALEND]
// (RFC6891), although any unassigned code can actually be used. The content of
// the option is made available in Data, unaltered.
// Basic use pattern for creating a local option:
//
// o := new(dns.OPT)
// o.Hdr.Name = "."
// o.Hdr.Rrtype = dns.TypeOPT
// e := new(dns.EDNS0_LOCAL)
// e.Code = dns.EDNS0LOCALSTART
// e.Data = []byte{72, 82, 74}
// o.Option = append(o.Option, e)
type EDNS0_LOCAL struct {
Code uint16
Data []byte
}
// Option implements the EDNS0 interface.
func (e *EDNS0_LOCAL) Option() uint16 { return e.Code }
func (e *EDNS0_LOCAL) String() string {
return strconv.FormatInt(int64(e.Code), 10) + ":0x" + hex.EncodeToString(e.Data)
}
func (e *EDNS0_LOCAL) pack() ([]byte, error) {
b := make([]byte, len(e.Data))
copied := copy(b, e.Data)
if copied != len(e.Data) {
return nil, ErrBuf
}
return b, nil
}
func (e *EDNS0_LOCAL) unpack(b []byte) error {
e.Data = make([]byte, len(b))
copied := copy(e.Data, b)
if copied != len(b) {
return ErrBuf
}
return nil
}
// EDNS0_TCP_KEEPALIVE is an EDNS0 option that instructs the server to keep
// the TCP connection alive. See RFC 7828.
type EDNS0_TCP_KEEPALIVE struct {
Code uint16 // Always EDNSTCPKEEPALIVE
Length uint16 // the value 0 if the TIMEOUT is omitted, the value 2 if it is present;
Timeout uint16 // an idle timeout value for the TCP connection, specified in units of 100 milliseconds, encoded in network byte order.
}
// Option implements the EDNS0 interface.
func (e *EDNS0_TCP_KEEPALIVE) Option() uint16 { return EDNS0TCPKEEPALIVE }
func (e *EDNS0_TCP_KEEPALIVE) pack() ([]byte, error) {
if e.Timeout != 0 && e.Length != 2 {
return nil, errors.New("dns: timeout specified but length is not 2")
}
if e.Timeout == 0 && e.Length != 0 {
return nil, errors.New("dns: timeout not specified but length is not 0")
}
b := make([]byte, 4+e.Length)
binary.BigEndian.PutUint16(b[0:], e.Code)
binary.BigEndian.PutUint16(b[2:], e.Length)
if e.Length == 2 {
binary.BigEndian.PutUint16(b[4:], e.Timeout)
}
return b, nil
}
func (e *EDNS0_TCP_KEEPALIVE) unpack(b []byte) error {
if len(b) < 4 {
return ErrBuf
}
e.Length = binary.BigEndian.Uint16(b[2:4])
if e.Length != 0 && e.Length != 2 {
return errors.New("dns: length mismatch, want 0/2 but got " + strconv.FormatUint(uint64(e.Length), 10))
}
if e.Length == 2 {
if len(b) < 6 {
return ErrBuf
}
e.Timeout = binary.BigEndian.Uint16(b[4:6])
}
return nil
}
func (e *EDNS0_TCP_KEEPALIVE) String() (s string) {
s = "use tcp keep-alive"
if e.Length == 0 {
s += ", timeout omitted"
} else {
s += fmt.Sprintf(", timeout %dms", e.Timeout*100)
}
return
}
// EDNS0_PADDING option is used to add padding to a request/response. The default
// value of padding SHOULD be 0x0 but other values MAY be used, for instance if
// compression is applied before encryption which may break signatures.
type EDNS0_PADDING struct {
Padding []byte
}
// Option implements the EDNS0 interface.
func (e *EDNS0_PADDING) Option() uint16 { return EDNS0PADDING }
func (e *EDNS0_PADDING) pack() ([]byte, error) { return e.Padding, nil }
func (e *EDNS0_PADDING) unpack(b []byte) error { e.Padding = b; return nil }
func (e *EDNS0_PADDING) String() string { return fmt.Sprintf("%0X", e.Padding) }

87
vendor/github.com/miekg/dns/format.go generated vendored Normal file
View File

@ -0,0 +1,87 @@
package dns
import (
"net"
"reflect"
"strconv"
)
// NumField returns the number of rdata fields r has.
func NumField(r RR) int {
return reflect.ValueOf(r).Elem().NumField() - 1 // Remove RR_Header
}
// Field returns the rdata field i as a string. Fields are indexed starting from 1.
// RR types that holds slice data, for instance the NSEC type bitmap will return a single
// string where the types are concatenated using a space.
// Accessing non existing fields will cause a panic.
func Field(r RR, i int) string {
if i == 0 {
return ""
}
d := reflect.ValueOf(r).Elem().Field(i)
switch k := d.Kind(); k {
case reflect.String:
return d.String()
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return strconv.FormatInt(d.Int(), 10)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
return strconv.FormatUint(d.Uint(), 10)
case reflect.Slice:
switch reflect.ValueOf(r).Elem().Type().Field(i).Tag {
case `dns:"a"`:
// TODO(miek): Hmm store this as 16 bytes
if d.Len() < net.IPv6len {
return net.IPv4(byte(d.Index(0).Uint()),
byte(d.Index(1).Uint()),
byte(d.Index(2).Uint()),
byte(d.Index(3).Uint())).String()
}
return net.IPv4(byte(d.Index(12).Uint()),
byte(d.Index(13).Uint()),
byte(d.Index(14).Uint()),
byte(d.Index(15).Uint())).String()
case `dns:"aaaa"`:
return net.IP{
byte(d.Index(0).Uint()),
byte(d.Index(1).Uint()),
byte(d.Index(2).Uint()),
byte(d.Index(3).Uint()),
byte(d.Index(4).Uint()),
byte(d.Index(5).Uint()),
byte(d.Index(6).Uint()),
byte(d.Index(7).Uint()),
byte(d.Index(8).Uint()),
byte(d.Index(9).Uint()),
byte(d.Index(10).Uint()),
byte(d.Index(11).Uint()),
byte(d.Index(12).Uint()),
byte(d.Index(13).Uint()),
byte(d.Index(14).Uint()),
byte(d.Index(15).Uint()),
}.String()
case `dns:"nsec"`:
if d.Len() == 0 {
return ""
}
s := Type(d.Index(0).Uint()).String()
for i := 1; i < d.Len(); i++ {
s += " " + Type(d.Index(i).Uint()).String()
}
return s
default:
// if it does not have a tag its a string slice
fallthrough
case `dns:"txt"`:
if d.Len() == 0 {
return ""
}
s := d.Index(0).String()
for i := 1; i < d.Len(); i++ {
s += " " + d.Index(i).String()
}
return s
}
}
return ""
}

23
vendor/github.com/miekg/dns/fuzz.go generated vendored Normal file
View File

@ -0,0 +1,23 @@
// +build fuzz
package dns
func Fuzz(data []byte) int {
msg := new(Msg)
if err := msg.Unpack(data); err != nil {
return 0
}
if _, err := msg.Pack(); err != nil {
return 0
}
return 1
}
func FuzzNewRR(data []byte) int {
if _, err := NewRR(string(data)); err != nil {
return 0
}
return 1
}

169
vendor/github.com/miekg/dns/generate.go generated vendored Normal file
View File

@ -0,0 +1,169 @@
package dns
import (
"bytes"
"errors"
"fmt"
"strconv"
"strings"
)
// Parse the $GENERATE statement as used in BIND9 zones.
// See http://www.zytrax.com/books/dns/ch8/generate.html for instance.
// We are called after '$GENERATE '. After which we expect:
// * the range (12-24/2)
// * lhs (ownername)
// * [[ttl][class]]
// * type
// * rhs (rdata)
// But we are lazy here, only the range is parsed *all* occurrences
// of $ after that are interpreted.
// Any error are returned as a string value, the empty string signals
// "no error".
func generate(l lex, c chan lex, t chan *Token, o string) string {
step := 1
if i := strings.IndexAny(l.token, "/"); i != -1 {
if i+1 == len(l.token) {
return "bad step in $GENERATE range"
}
if s, err := strconv.Atoi(l.token[i+1:]); err == nil {
if s < 0 {
return "bad step in $GENERATE range"
}
step = s
} else {
return "bad step in $GENERATE range"
}
l.token = l.token[:i]
}
sx := strings.SplitN(l.token, "-", 2)
if len(sx) != 2 {
return "bad start-stop in $GENERATE range"
}
start, err := strconv.Atoi(sx[0])
if err != nil {
return "bad start in $GENERATE range"
}
end, err := strconv.Atoi(sx[1])
if err != nil {
return "bad stop in $GENERATE range"
}
if end < 0 || start < 0 || end < start {
return "bad range in $GENERATE range"
}
<-c // _BLANK
// Create a complete new string, which we then parse again.
s := ""
BuildRR:
l = <-c
if l.value != zNewline && l.value != zEOF {
s += l.token
goto BuildRR
}
for i := start; i <= end; i += step {
var (
escape bool
dom bytes.Buffer
mod string
err error
offset int
)
for j := 0; j < len(s); j++ { // No 'range' because we need to jump around
switch s[j] {
case '\\':
if escape {
dom.WriteByte('\\')
escape = false
continue
}
escape = true
case '$':
mod = "%d"
offset = 0
if escape {
dom.WriteByte('$')
escape = false
continue
}
escape = false
if j+1 >= len(s) { // End of the string
dom.WriteString(fmt.Sprintf(mod, i+offset))
continue
} else {
if s[j+1] == '$' {
dom.WriteByte('$')
j++
continue
}
}
// Search for { and }
if s[j+1] == '{' { // Modifier block
sep := strings.Index(s[j+2:], "}")
if sep == -1 {
return "bad modifier in $GENERATE"
}
mod, offset, err = modToPrintf(s[j+2 : j+2+sep])
if err != nil {
return err.Error()
}
j += 2 + sep // Jump to it
}
dom.WriteString(fmt.Sprintf(mod, i+offset))
default:
if escape { // Pretty useless here
escape = false
continue
}
dom.WriteByte(s[j])
}
}
// Re-parse the RR and send it on the current channel t
rx, err := NewRR("$ORIGIN " + o + "\n" + dom.String())
if err != nil {
return err.Error()
}
t <- &Token{RR: rx}
// Its more efficient to first built the rrlist and then parse it in
// one go! But is this a problem?
}
return ""
}
// Convert a $GENERATE modifier 0,0,d to something Printf can deal with.
func modToPrintf(s string) (string, int, error) {
xs := strings.Split(s, ",")
// Modifier is { offset [ ,width [ ,base ] ] } - provide default
// values for optional width and type, if necessary.
switch len(xs) {
case 1:
xs = append(xs, "0", "d")
case 2:
xs = append(xs, "d")
case 3:
default:
return "", 0, errors.New("bad modifier in $GENERATE")
}
// xs[0] is offset, xs[1] is width, xs[2] is base
if xs[2] != "o" && xs[2] != "d" && xs[2] != "x" && xs[2] != "X" {
return "", 0, errors.New("bad base in $GENERATE")
}
offset, err := strconv.Atoi(xs[0])
if err != nil || offset > 255 {
return "", 0, errors.New("bad offset in $GENERATE")
}
width, err := strconv.Atoi(xs[1])
if err != nil || width > 255 {
return "", offset, errors.New("bad width in $GENERATE")
}
switch {
case width < 0:
return "", offset, errors.New("bad width in $GENERATE")
case width == 0:
return "%" + xs[1] + xs[2], offset, nil
}
return "%0" + xs[1] + xs[2], offset, nil
}

191
vendor/github.com/miekg/dns/labels.go generated vendored Normal file
View File

@ -0,0 +1,191 @@
package dns
// Holds a bunch of helper functions for dealing with labels.
// SplitDomainName splits a name string into it's labels.
// www.miek.nl. returns []string{"www", "miek", "nl"}
// .www.miek.nl. returns []string{"", "www", "miek", "nl"},
// The root label (.) returns nil. Note that using
// strings.Split(s) will work in most cases, but does not handle
// escaped dots (\.) for instance.
// s must be a syntactically valid domain name, see IsDomainName.
func SplitDomainName(s string) (labels []string) {
if len(s) == 0 {
return nil
}
fqdnEnd := 0 // offset of the final '.' or the length of the name
idx := Split(s)
begin := 0
if s[len(s)-1] == '.' {
fqdnEnd = len(s) - 1
} else {
fqdnEnd = len(s)
}
switch len(idx) {
case 0:
return nil
case 1:
// no-op
default:
end := 0
for i := 1; i < len(idx); i++ {
end = idx[i]
labels = append(labels, s[begin:end-1])
begin = end
}
}
labels = append(labels, s[begin:fqdnEnd])
return labels
}
// CompareDomainName compares the names s1 and s2 and
// returns how many labels they have in common starting from the *right*.
// The comparison stops at the first inequality. The names are downcased
// before the comparison.
//
// www.miek.nl. and miek.nl. have two labels in common: miek and nl
// www.miek.nl. and www.bla.nl. have one label in common: nl
//
// s1 and s2 must be syntactically valid domain names.
func CompareDomainName(s1, s2 string) (n int) {
// the first check: root label
if s1 == "." || s2 == "." {
return 0
}
l1 := Split(s1)
l2 := Split(s2)
j1 := len(l1) - 1 // end
i1 := len(l1) - 2 // start
j2 := len(l2) - 1
i2 := len(l2) - 2
// the second check can be done here: last/only label
// before we fall through into the for-loop below
if equal(s1[l1[j1]:], s2[l2[j2]:]) {
n++
} else {
return
}
for {
if i1 < 0 || i2 < 0 {
break
}
if equal(s1[l1[i1]:l1[j1]], s2[l2[i2]:l2[j2]]) {
n++
} else {
break
}
j1--
i1--
j2--
i2--
}
return
}
// CountLabel counts the the number of labels in the string s.
// s must be a syntactically valid domain name.
func CountLabel(s string) (labels int) {
if s == "." {
return
}
off := 0
end := false
for {
off, end = NextLabel(s, off)
labels++
if end {
return
}
}
}
// Split splits a name s into its label indexes.
// www.miek.nl. returns []int{0, 4, 9}, www.miek.nl also returns []int{0, 4, 9}.
// The root name (.) returns nil. Also see SplitDomainName.
// s must be a syntactically valid domain name.
func Split(s string) []int {
if s == "." {
return nil
}
idx := make([]int, 1, 3)
off := 0
end := false
for {
off, end = NextLabel(s, off)
if end {
return idx
}
idx = append(idx, off)
}
}
// NextLabel returns the index of the start of the next label in the
// string s starting at offset.
// The bool end is true when the end of the string has been reached.
// Also see PrevLabel.
func NextLabel(s string, offset int) (i int, end bool) {
quote := false
for i = offset; i < len(s)-1; i++ {
switch s[i] {
case '\\':
quote = !quote
default:
quote = false
case '.':
if quote {
quote = !quote
continue
}
return i + 1, false
}
}
return i + 1, true
}
// PrevLabel returns the index of the label when starting from the right and
// jumping n labels to the left.
// The bool start is true when the start of the string has been overshot.
// Also see NextLabel.
func PrevLabel(s string, n int) (i int, start bool) {
if n == 0 {
return len(s), false
}
lab := Split(s)
if lab == nil {
return 0, true
}
if n > len(lab) {
return 0, true
}
return lab[len(lab)-n], false
}
// equal compares a and b while ignoring case. It returns true when equal otherwise false.
func equal(a, b string) bool {
// might be lifted into API function.
la := len(a)
lb := len(b)
if la != lb {
return false
}
for i := la - 1; i >= 0; i-- {
ai := a[i]
bi := b[i]
if ai >= 'A' && ai <= 'Z' {
ai |= 'a' - 'A'
}
if bi >= 'A' && bi <= 'Z' {
bi |= 'a' - 'A'
}
if ai != bi {
return false
}
}
return true
}

43
vendor/github.com/miekg/dns/listen_go111.go generated vendored Normal file
View File

@ -0,0 +1,43 @@
// +build go1.11,!windows
package dns
import (
"context"
"net"
"syscall"
"golang.org/x/sys/unix"
)
const supportsReusePort = true
func reuseportControl(network, address string, c syscall.RawConn) error {
var opErr error
err := c.Control(func(fd uintptr) {
opErr = unix.SetsockoptInt(int(fd), unix.SOL_SOCKET, unix.SO_REUSEPORT, 1)
})
if err != nil {
return err
}
return opErr
}
func listenTCP(network, addr string, reuseport bool) (net.Listener, error) {
var lc net.ListenConfig
if reuseport {
lc.Control = reuseportControl
}
return lc.Listen(context.Background(), network, addr)
}
func listenUDP(network, addr string, reuseport bool) (net.PacketConn, error) {
var lc net.ListenConfig
if reuseport {
lc.Control = reuseportControl
}
return lc.ListenPacket(context.Background(), network, addr)
}

23
vendor/github.com/miekg/dns/listen_go_not111.go generated vendored Normal file
View File

@ -0,0 +1,23 @@
// +build !go1.11 windows
package dns
import "net"
const supportsReusePort = false
func listenTCP(network, addr string, reuseport bool) (net.Listener, error) {
if reuseport {
// TODO(tmthrgd): return an error?
}
return net.Listen(network, addr)
}
func listenUDP(network, addr string, reuseport bool) (net.PacketConn, error) {
if reuseport {
// TODO(tmthrgd): return an error?
}
return net.ListenPacket(network, addr)
}

1206
vendor/github.com/miekg/dns/msg.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

348
vendor/github.com/miekg/dns/msg_generate.go generated vendored Normal file
View File

@ -0,0 +1,348 @@
//+build ignore
// msg_generate.go is meant to run with go generate. It will use
// go/{importer,types} to track down all the RR struct types. Then for each type
// it will generate pack/unpack methods based on the struct tags. The generated source is
// written to zmsg.go, and is meant to be checked into git.
package main
import (
"bytes"
"fmt"
"go/format"
"go/importer"
"go/types"
"log"
"os"
"strings"
)
var packageHdr = `
// Code generated by "go run msg_generate.go"; DO NOT EDIT.
package dns
`
// getTypeStruct will take a type and the package scope, and return the
// (innermost) struct if the type is considered a RR type (currently defined as
// those structs beginning with a RR_Header, could be redefined as implementing
// the RR interface). The bool return value indicates if embedded structs were
// resolved.
func getTypeStruct(t types.Type, scope *types.Scope) (*types.Struct, bool) {
st, ok := t.Underlying().(*types.Struct)
if !ok {
return nil, false
}
if st.Field(0).Type() == scope.Lookup("RR_Header").Type() {
return st, false
}
if st.Field(0).Anonymous() {
st, _ := getTypeStruct(st.Field(0).Type(), scope)
return st, true
}
return nil, false
}
func main() {
// Import and type-check the package
pkg, err := importer.Default().Import("github.com/miekg/dns")
fatalIfErr(err)
scope := pkg.Scope()
// Collect actual types (*X)
var namedTypes []string
for _, name := range scope.Names() {
o := scope.Lookup(name)
if o == nil || !o.Exported() {
continue
}
if st, _ := getTypeStruct(o.Type(), scope); st == nil {
continue
}
if name == "PrivateRR" {
continue
}
// Check if corresponding TypeX exists
if scope.Lookup("Type"+o.Name()) == nil && o.Name() != "RFC3597" {
log.Fatalf("Constant Type%s does not exist.", o.Name())
}
namedTypes = append(namedTypes, o.Name())
}
b := &bytes.Buffer{}
b.WriteString(packageHdr)
fmt.Fprint(b, "// pack*() functions\n\n")
for _, name := range namedTypes {
o := scope.Lookup(name)
st, _ := getTypeStruct(o.Type(), scope)
fmt.Fprintf(b, "func (rr *%s) pack(msg []byte, off int, compression map[string]int, compress bool) (int, error) {\n", name)
fmt.Fprint(b, `off, err := rr.Hdr.pack(msg, off, compression, compress)
if err != nil {
return off, err
}
headerEnd := off
`)
for i := 1; i < st.NumFields(); i++ {
o := func(s string) {
fmt.Fprintf(b, s, st.Field(i).Name())
fmt.Fprint(b, `if err != nil {
return off, err
}
`)
}
if _, ok := st.Field(i).Type().(*types.Slice); ok {
switch st.Tag(i) {
case `dns:"-"`: // ignored
case `dns:"txt"`:
o("off, err = packStringTxt(rr.%s, msg, off)\n")
case `dns:"opt"`:
o("off, err = packDataOpt(rr.%s, msg, off)\n")
case `dns:"nsec"`:
o("off, err = packDataNsec(rr.%s, msg, off)\n")
case `dns:"domain-name"`:
o("off, err = packDataDomainNames(rr.%s, msg, off, compression, compress)\n")
default:
log.Fatalln(name, st.Field(i).Name(), st.Tag(i))
}
continue
}
switch {
case st.Tag(i) == `dns:"-"`: // ignored
case st.Tag(i) == `dns:"cdomain-name"`:
o("off, err = PackDomainName(rr.%s, msg, off, compression, compress)\n")
case st.Tag(i) == `dns:"domain-name"`:
o("off, err = PackDomainName(rr.%s, msg, off, compression, false)\n")
case st.Tag(i) == `dns:"a"`:
o("off, err = packDataA(rr.%s, msg, off)\n")
case st.Tag(i) == `dns:"aaaa"`:
o("off, err = packDataAAAA(rr.%s, msg, off)\n")
case st.Tag(i) == `dns:"uint48"`:
o("off, err = packUint48(rr.%s, msg, off)\n")
case st.Tag(i) == `dns:"txt"`:
o("off, err = packString(rr.%s, msg, off)\n")
case strings.HasPrefix(st.Tag(i), `dns:"size-base32`): // size-base32 can be packed just like base32
fallthrough
case st.Tag(i) == `dns:"base32"`:
o("off, err = packStringBase32(rr.%s, msg, off)\n")
case strings.HasPrefix(st.Tag(i), `dns:"size-base64`): // size-base64 can be packed just like base64
fallthrough
case st.Tag(i) == `dns:"base64"`:
o("off, err = packStringBase64(rr.%s, msg, off)\n")
case strings.HasPrefix(st.Tag(i), `dns:"size-hex:SaltLength`):
// directly write instead of using o() so we get the error check in the correct place
field := st.Field(i).Name()
fmt.Fprintf(b, `// Only pack salt if value is not "-", i.e. empty
if rr.%s != "-" {
off, err = packStringHex(rr.%s, msg, off)
if err != nil {
return off, err
}
}
`, field, field)
continue
case strings.HasPrefix(st.Tag(i), `dns:"size-hex`): // size-hex can be packed just like hex
fallthrough
case st.Tag(i) == `dns:"hex"`:
o("off, err = packStringHex(rr.%s, msg, off)\n")
case st.Tag(i) == `dns:"octet"`:
o("off, err = packStringOctet(rr.%s, msg, off)\n")
case st.Tag(i) == "":
switch st.Field(i).Type().(*types.Basic).Kind() {
case types.Uint8:
o("off, err = packUint8(rr.%s, msg, off)\n")
case types.Uint16:
o("off, err = packUint16(rr.%s, msg, off)\n")
case types.Uint32:
o("off, err = packUint32(rr.%s, msg, off)\n")
case types.Uint64:
o("off, err = packUint64(rr.%s, msg, off)\n")
case types.String:
o("off, err = packString(rr.%s, msg, off)\n")
default:
log.Fatalln(name, st.Field(i).Name())
}
default:
log.Fatalln(name, st.Field(i).Name(), st.Tag(i))
}
}
// We have packed everything, only now we know the rdlength of this RR
fmt.Fprintln(b, "rr.Header().Rdlength = uint16(off-headerEnd)")
fmt.Fprintln(b, "return off, nil }\n")
}
fmt.Fprint(b, "// unpack*() functions\n\n")
for _, name := range namedTypes {
o := scope.Lookup(name)
st, _ := getTypeStruct(o.Type(), scope)
fmt.Fprintf(b, "func unpack%s(h RR_Header, msg []byte, off int) (RR, int, error) {\n", name)
fmt.Fprintf(b, "rr := new(%s)\n", name)
fmt.Fprint(b, "rr.Hdr = h\n")
fmt.Fprint(b, `if noRdata(h) {
return rr, off, nil
}
var err error
rdStart := off
_ = rdStart
`)
for i := 1; i < st.NumFields(); i++ {
o := func(s string) {
fmt.Fprintf(b, s, st.Field(i).Name())
fmt.Fprint(b, `if err != nil {
return rr, off, err
}
`)
}
// size-* are special, because they reference a struct member we should use for the length.
if strings.HasPrefix(st.Tag(i), `dns:"size-`) {
structMember := structMember(st.Tag(i))
structTag := structTag(st.Tag(i))
switch structTag {
case "hex":
fmt.Fprintf(b, "rr.%s, off, err = unpackStringHex(msg, off, off + int(rr.%s))\n", st.Field(i).Name(), structMember)
case "base32":
fmt.Fprintf(b, "rr.%s, off, err = unpackStringBase32(msg, off, off + int(rr.%s))\n", st.Field(i).Name(), structMember)
case "base64":
fmt.Fprintf(b, "rr.%s, off, err = unpackStringBase64(msg, off, off + int(rr.%s))\n", st.Field(i).Name(), structMember)
default:
log.Fatalln(name, st.Field(i).Name(), st.Tag(i))
}
fmt.Fprint(b, `if err != nil {
return rr, off, err
}
`)
continue
}
if _, ok := st.Field(i).Type().(*types.Slice); ok {
switch st.Tag(i) {
case `dns:"-"`: // ignored
case `dns:"txt"`:
o("rr.%s, off, err = unpackStringTxt(msg, off)\n")
case `dns:"opt"`:
o("rr.%s, off, err = unpackDataOpt(msg, off)\n")
case `dns:"nsec"`:
o("rr.%s, off, err = unpackDataNsec(msg, off)\n")
case `dns:"domain-name"`:
o("rr.%s, off, err = unpackDataDomainNames(msg, off, rdStart + int(rr.Hdr.Rdlength))\n")
default:
log.Fatalln(name, st.Field(i).Name(), st.Tag(i))
}
continue
}
switch st.Tag(i) {
case `dns:"-"`: // ignored
case `dns:"cdomain-name"`:
fallthrough
case `dns:"domain-name"`:
o("rr.%s, off, err = UnpackDomainName(msg, off)\n")
case `dns:"a"`:
o("rr.%s, off, err = unpackDataA(msg, off)\n")
case `dns:"aaaa"`:
o("rr.%s, off, err = unpackDataAAAA(msg, off)\n")
case `dns:"uint48"`:
o("rr.%s, off, err = unpackUint48(msg, off)\n")
case `dns:"txt"`:
o("rr.%s, off, err = unpackString(msg, off)\n")
case `dns:"base32"`:
o("rr.%s, off, err = unpackStringBase32(msg, off, rdStart + int(rr.Hdr.Rdlength))\n")
case `dns:"base64"`:
o("rr.%s, off, err = unpackStringBase64(msg, off, rdStart + int(rr.Hdr.Rdlength))\n")
case `dns:"hex"`:
o("rr.%s, off, err = unpackStringHex(msg, off, rdStart + int(rr.Hdr.Rdlength))\n")
case `dns:"octet"`:
o("rr.%s, off, err = unpackStringOctet(msg, off)\n")
case "":
switch st.Field(i).Type().(*types.Basic).Kind() {
case types.Uint8:
o("rr.%s, off, err = unpackUint8(msg, off)\n")
case types.Uint16:
o("rr.%s, off, err = unpackUint16(msg, off)\n")
case types.Uint32:
o("rr.%s, off, err = unpackUint32(msg, off)\n")
case types.Uint64:
o("rr.%s, off, err = unpackUint64(msg, off)\n")
case types.String:
o("rr.%s, off, err = unpackString(msg, off)\n")
default:
log.Fatalln(name, st.Field(i).Name())
}
default:
log.Fatalln(name, st.Field(i).Name(), st.Tag(i))
}
// If we've hit len(msg) we return without error.
if i < st.NumFields()-1 {
fmt.Fprintf(b, `if off == len(msg) {
return rr, off, nil
}
`)
}
}
fmt.Fprintf(b, "return rr, off, err }\n\n")
}
// Generate typeToUnpack map
fmt.Fprintln(b, "var typeToUnpack = map[uint16]func(RR_Header, []byte, int) (RR, int, error){")
for _, name := range namedTypes {
if name == "RFC3597" {
continue
}
fmt.Fprintf(b, "Type%s: unpack%s,\n", name, name)
}
fmt.Fprintln(b, "}\n")
// gofmt
res, err := format.Source(b.Bytes())
if err != nil {
b.WriteTo(os.Stderr)
log.Fatal(err)
}
// write result
f, err := os.Create("zmsg.go")
fatalIfErr(err)
defer f.Close()
f.Write(res)
}
// structMember will take a tag like dns:"size-base32:SaltLength" and return the last part of this string.
func structMember(s string) string {
fields := strings.Split(s, ":")
if len(fields) == 0 {
return ""
}
f := fields[len(fields)-1]
// f should have a closing "
if len(f) > 1 {
return f[:len(f)-1]
}
return f
}
// structTag will take a tag like dns:"size-base32:SaltLength" and return base32.
func structTag(s string) string {
fields := strings.Split(s, ":")
if len(fields) < 2 {
return ""
}
return fields[1][len("\"size-"):]
}
func fatalIfErr(err error) {
if err != nil {
log.Fatal(err)
}
}

641
vendor/github.com/miekg/dns/msg_helpers.go generated vendored Normal file
View File

@ -0,0 +1,641 @@
package dns
import (
"encoding/base32"
"encoding/base64"
"encoding/binary"
"encoding/hex"
"net"
"strconv"
)
// helper functions called from the generated zmsg.go
// These function are named after the tag to help pack/unpack, if there is no tag it is the name
// of the type they pack/unpack (string, int, etc). We prefix all with unpackData or packData, so packDataA or
// packDataDomainName.
func unpackDataA(msg []byte, off int) (net.IP, int, error) {
if off+net.IPv4len > len(msg) {
return nil, len(msg), &Error{err: "overflow unpacking a"}
}
a := append(make(net.IP, 0, net.IPv4len), msg[off:off+net.IPv4len]...)
off += net.IPv4len
return a, off, nil
}
func packDataA(a net.IP, msg []byte, off int) (int, error) {
// It must be a slice of 4, even if it is 16, we encode only the first 4
if off+net.IPv4len > len(msg) {
return len(msg), &Error{err: "overflow packing a"}
}
switch len(a) {
case net.IPv4len, net.IPv6len:
copy(msg[off:], a.To4())
off += net.IPv4len
case 0:
// Allowed, for dynamic updates.
default:
return len(msg), &Error{err: "overflow packing a"}
}
return off, nil
}
func unpackDataAAAA(msg []byte, off int) (net.IP, int, error) {
if off+net.IPv6len > len(msg) {
return nil, len(msg), &Error{err: "overflow unpacking aaaa"}
}
aaaa := append(make(net.IP, 0, net.IPv6len), msg[off:off+net.IPv6len]...)
off += net.IPv6len
return aaaa, off, nil
}
func packDataAAAA(aaaa net.IP, msg []byte, off int) (int, error) {
if off+net.IPv6len > len(msg) {
return len(msg), &Error{err: "overflow packing aaaa"}
}
switch len(aaaa) {
case net.IPv6len:
copy(msg[off:], aaaa)
off += net.IPv6len
case 0:
// Allowed, dynamic updates.
default:
return len(msg), &Error{err: "overflow packing aaaa"}
}
return off, nil
}
// unpackHeader unpacks an RR header, returning the offset to the end of the header and a
// re-sliced msg according to the expected length of the RR.
func unpackHeader(msg []byte, off int) (rr RR_Header, off1 int, truncmsg []byte, err error) {
hdr := RR_Header{}
if off == len(msg) {
return hdr, off, msg, nil
}
hdr.Name, off, err = UnpackDomainName(msg, off)
if err != nil {
return hdr, len(msg), msg, err
}
hdr.Rrtype, off, err = unpackUint16(msg, off)
if err != nil {
return hdr, len(msg), msg, err
}
hdr.Class, off, err = unpackUint16(msg, off)
if err != nil {
return hdr, len(msg), msg, err
}
hdr.Ttl, off, err = unpackUint32(msg, off)
if err != nil {
return hdr, len(msg), msg, err
}
hdr.Rdlength, off, err = unpackUint16(msg, off)
if err != nil {
return hdr, len(msg), msg, err
}
msg, err = truncateMsgFromRdlength(msg, off, hdr.Rdlength)
return hdr, off, msg, err
}
// pack packs an RR header, returning the offset to the end of the header.
// See PackDomainName for documentation about the compression.
func (hdr RR_Header) pack(msg []byte, off int, compression map[string]int, compress bool) (off1 int, err error) {
if off == len(msg) {
return off, nil
}
off, err = PackDomainName(hdr.Name, msg, off, compression, compress)
if err != nil {
return len(msg), err
}
off, err = packUint16(hdr.Rrtype, msg, off)
if err != nil {
return len(msg), err
}
off, err = packUint16(hdr.Class, msg, off)
if err != nil {
return len(msg), err
}
off, err = packUint32(hdr.Ttl, msg, off)
if err != nil {
return len(msg), err
}
off, err = packUint16(hdr.Rdlength, msg, off)
if err != nil {
return len(msg), err
}
return off, nil
}
// helper helper functions.
// truncateMsgFromRdLength truncates msg to match the expected length of the RR.
// Returns an error if msg is smaller than the expected size.
func truncateMsgFromRdlength(msg []byte, off int, rdlength uint16) (truncmsg []byte, err error) {
lenrd := off + int(rdlength)
if lenrd > len(msg) {
return msg, &Error{err: "overflowing header size"}
}
return msg[:lenrd], nil
}
var base32HexNoPadEncoding = base32.HexEncoding.WithPadding(base32.NoPadding)
func fromBase32(s []byte) (buf []byte, err error) {
for i, b := range s {
if b >= 'a' && b <= 'z' {
s[i] = b - 32
}
}
buflen := base32HexNoPadEncoding.DecodedLen(len(s))
buf = make([]byte, buflen)
n, err := base32HexNoPadEncoding.Decode(buf, s)
buf = buf[:n]
return
}
func toBase32(b []byte) string {
return base32HexNoPadEncoding.EncodeToString(b)
}
func fromBase64(s []byte) (buf []byte, err error) {
buflen := base64.StdEncoding.DecodedLen(len(s))
buf = make([]byte, buflen)
n, err := base64.StdEncoding.Decode(buf, s)
buf = buf[:n]
return
}
func toBase64(b []byte) string { return base64.StdEncoding.EncodeToString(b) }
// dynamicUpdate returns true if the Rdlength is zero.
func noRdata(h RR_Header) bool { return h.Rdlength == 0 }
func unpackUint8(msg []byte, off int) (i uint8, off1 int, err error) {
if off+1 > len(msg) {
return 0, len(msg), &Error{err: "overflow unpacking uint8"}
}
return uint8(msg[off]), off + 1, nil
}
func packUint8(i uint8, msg []byte, off int) (off1 int, err error) {
if off+1 > len(msg) {
return len(msg), &Error{err: "overflow packing uint8"}
}
msg[off] = byte(i)
return off + 1, nil
}
func unpackUint16(msg []byte, off int) (i uint16, off1 int, err error) {
if off+2 > len(msg) {
return 0, len(msg), &Error{err: "overflow unpacking uint16"}
}
return binary.BigEndian.Uint16(msg[off:]), off + 2, nil
}
func packUint16(i uint16, msg []byte, off int) (off1 int, err error) {
if off+2 > len(msg) {
return len(msg), &Error{err: "overflow packing uint16"}
}
binary.BigEndian.PutUint16(msg[off:], i)
return off + 2, nil
}
func unpackUint32(msg []byte, off int) (i uint32, off1 int, err error) {
if off+4 > len(msg) {
return 0, len(msg), &Error{err: "overflow unpacking uint32"}
}
return binary.BigEndian.Uint32(msg[off:]), off + 4, nil
}
func packUint32(i uint32, msg []byte, off int) (off1 int, err error) {
if off+4 > len(msg) {
return len(msg), &Error{err: "overflow packing uint32"}
}
binary.BigEndian.PutUint32(msg[off:], i)
return off + 4, nil
}
func unpackUint48(msg []byte, off int) (i uint64, off1 int, err error) {
if off+6 > len(msg) {
return 0, len(msg), &Error{err: "overflow unpacking uint64 as uint48"}
}
// Used in TSIG where the last 48 bits are occupied, so for now, assume a uint48 (6 bytes)
i = uint64(uint64(msg[off])<<40 | uint64(msg[off+1])<<32 | uint64(msg[off+2])<<24 | uint64(msg[off+3])<<16 |
uint64(msg[off+4])<<8 | uint64(msg[off+5]))
off += 6
return i, off, nil
}
func packUint48(i uint64, msg []byte, off int) (off1 int, err error) {
if off+6 > len(msg) {
return len(msg), &Error{err: "overflow packing uint64 as uint48"}
}
msg[off] = byte(i >> 40)
msg[off+1] = byte(i >> 32)
msg[off+2] = byte(i >> 24)
msg[off+3] = byte(i >> 16)
msg[off+4] = byte(i >> 8)
msg[off+5] = byte(i)
off += 6
return off, nil
}
func unpackUint64(msg []byte, off int) (i uint64, off1 int, err error) {
if off+8 > len(msg) {
return 0, len(msg), &Error{err: "overflow unpacking uint64"}
}
return binary.BigEndian.Uint64(msg[off:]), off + 8, nil
}
func packUint64(i uint64, msg []byte, off int) (off1 int, err error) {
if off+8 > len(msg) {
return len(msg), &Error{err: "overflow packing uint64"}
}
binary.BigEndian.PutUint64(msg[off:], i)
off += 8
return off, nil
}
func unpackString(msg []byte, off int) (string, int, error) {
if off+1 > len(msg) {
return "", off, &Error{err: "overflow unpacking txt"}
}
l := int(msg[off])
if off+l+1 > len(msg) {
return "", off, &Error{err: "overflow unpacking txt"}
}
s := make([]byte, 0, l)
for _, b := range msg[off+1 : off+1+l] {
switch b {
case '"', '\\':
s = append(s, '\\', b)
default:
if b < 32 || b > 127 { // unprintable
var buf [3]byte
bufs := strconv.AppendInt(buf[:0], int64(b), 10)
s = append(s, '\\')
for i := 0; i < 3-len(bufs); i++ {
s = append(s, '0')
}
for _, r := range bufs {
s = append(s, r)
}
} else {
s = append(s, b)
}
}
}
off += 1 + l
return string(s), off, nil
}
func packString(s string, msg []byte, off int) (int, error) {
txtTmp := make([]byte, 256*4+1)
off, err := packTxtString(s, msg, off, txtTmp)
if err != nil {
return len(msg), err
}
return off, nil
}
func unpackStringBase32(msg []byte, off, end int) (string, int, error) {
if end > len(msg) {
return "", len(msg), &Error{err: "overflow unpacking base32"}
}
s := toBase32(msg[off:end])
return s, end, nil
}
func packStringBase32(s string, msg []byte, off int) (int, error) {
b32, err := fromBase32([]byte(s))
if err != nil {
return len(msg), err
}
if off+len(b32) > len(msg) {
return len(msg), &Error{err: "overflow packing base32"}
}
copy(msg[off:off+len(b32)], b32)
off += len(b32)
return off, nil
}
func unpackStringBase64(msg []byte, off, end int) (string, int, error) {
// Rest of the RR is base64 encoded value, so we don't need an explicit length
// to be set. Thus far all RR's that have base64 encoded fields have those as their
// last one. What we do need is the end of the RR!
if end > len(msg) {
return "", len(msg), &Error{err: "overflow unpacking base64"}
}
s := toBase64(msg[off:end])
return s, end, nil
}
func packStringBase64(s string, msg []byte, off int) (int, error) {
b64, err := fromBase64([]byte(s))
if err != nil {
return len(msg), err
}
if off+len(b64) > len(msg) {
return len(msg), &Error{err: "overflow packing base64"}
}
copy(msg[off:off+len(b64)], b64)
off += len(b64)
return off, nil
}
func unpackStringHex(msg []byte, off, end int) (string, int, error) {
// Rest of the RR is hex encoded value, so we don't need an explicit length
// to be set. NSEC and TSIG have hex fields with a length field.
// What we do need is the end of the RR!
if end > len(msg) {
return "", len(msg), &Error{err: "overflow unpacking hex"}
}
s := hex.EncodeToString(msg[off:end])
return s, end, nil
}
func packStringHex(s string, msg []byte, off int) (int, error) {
h, err := hex.DecodeString(s)
if err != nil {
return len(msg), err
}
if off+len(h) > len(msg) {
return len(msg), &Error{err: "overflow packing hex"}
}
copy(msg[off:off+len(h)], h)
off += len(h)
return off, nil
}
func unpackStringTxt(msg []byte, off int) ([]string, int, error) {
txt, off, err := unpackTxt(msg, off)
if err != nil {
return nil, len(msg), err
}
return txt, off, nil
}
func packStringTxt(s []string, msg []byte, off int) (int, error) {
txtTmp := make([]byte, 256*4+1) // If the whole string consists out of \DDD we need this many.
off, err := packTxt(s, msg, off, txtTmp)
if err != nil {
return len(msg), err
}
return off, nil
}
func unpackDataOpt(msg []byte, off int) ([]EDNS0, int, error) {
var edns []EDNS0
Option:
code := uint16(0)
if off+4 > len(msg) {
return nil, len(msg), &Error{err: "overflow unpacking opt"}
}
code = binary.BigEndian.Uint16(msg[off:])
off += 2
optlen := binary.BigEndian.Uint16(msg[off:])
off += 2
if off+int(optlen) > len(msg) {
return nil, len(msg), &Error{err: "overflow unpacking opt"}
}
switch code {
case EDNS0NSID:
e := new(EDNS0_NSID)
if err := e.unpack(msg[off : off+int(optlen)]); err != nil {
return nil, len(msg), err
}
edns = append(edns, e)
off += int(optlen)
case EDNS0SUBNET:
e := new(EDNS0_SUBNET)
if err := e.unpack(msg[off : off+int(optlen)]); err != nil {
return nil, len(msg), err
}
edns = append(edns, e)
off += int(optlen)
case EDNS0COOKIE:
e := new(EDNS0_COOKIE)
if err := e.unpack(msg[off : off+int(optlen)]); err != nil {
return nil, len(msg), err
}
edns = append(edns, e)
off += int(optlen)
case EDNS0UL:
e := new(EDNS0_UL)
if err := e.unpack(msg[off : off+int(optlen)]); err != nil {
return nil, len(msg), err
}
edns = append(edns, e)
off += int(optlen)
case EDNS0LLQ:
e := new(EDNS0_LLQ)
if err := e.unpack(msg[off : off+int(optlen)]); err != nil {
return nil, len(msg), err
}
edns = append(edns, e)
off += int(optlen)
case EDNS0DAU:
e := new(EDNS0_DAU)
if err := e.unpack(msg[off : off+int(optlen)]); err != nil {
return nil, len(msg), err
}
edns = append(edns, e)
off += int(optlen)
case EDNS0DHU:
e := new(EDNS0_DHU)
if err := e.unpack(msg[off : off+int(optlen)]); err != nil {
return nil, len(msg), err
}
edns = append(edns, e)
off += int(optlen)
case EDNS0N3U:
e := new(EDNS0_N3U)
if err := e.unpack(msg[off : off+int(optlen)]); err != nil {
return nil, len(msg), err
}
edns = append(edns, e)
off += int(optlen)
case EDNS0PADDING:
e := new(EDNS0_PADDING)
if err := e.unpack(msg[off : off+int(optlen)]); err != nil {
return nil, len(msg), err
}
edns = append(edns, e)
off += int(optlen)
default:
e := new(EDNS0_LOCAL)
e.Code = code
if err := e.unpack(msg[off : off+int(optlen)]); err != nil {
return nil, len(msg), err
}
edns = append(edns, e)
off += int(optlen)
}
if off < len(msg) {
goto Option
}
return edns, off, nil
}
func packDataOpt(options []EDNS0, msg []byte, off int) (int, error) {
for _, el := range options {
b, err := el.pack()
if err != nil || off+3 > len(msg) {
return len(msg), &Error{err: "overflow packing opt"}
}
binary.BigEndian.PutUint16(msg[off:], el.Option()) // Option code
binary.BigEndian.PutUint16(msg[off+2:], uint16(len(b))) // Length
off += 4
if off+len(b) > len(msg) {
copy(msg[off:], b)
off = len(msg)
continue
}
// Actual data
copy(msg[off:off+len(b)], b)
off += len(b)
}
return off, nil
}
func unpackStringOctet(msg []byte, off int) (string, int, error) {
s := string(msg[off:])
return s, len(msg), nil
}
func packStringOctet(s string, msg []byte, off int) (int, error) {
txtTmp := make([]byte, 256*4+1)
off, err := packOctetString(s, msg, off, txtTmp)
if err != nil {
return len(msg), err
}
return off, nil
}
func unpackDataNsec(msg []byte, off int) ([]uint16, int, error) {
var nsec []uint16
length, window, lastwindow := 0, 0, -1
for off < len(msg) {
if off+2 > len(msg) {
return nsec, len(msg), &Error{err: "overflow unpacking nsecx"}
}
window = int(msg[off])
length = int(msg[off+1])
off += 2
if window <= lastwindow {
// RFC 4034: Blocks are present in the NSEC RR RDATA in
// increasing numerical order.
return nsec, len(msg), &Error{err: "out of order NSEC block"}
}
if length == 0 {
// RFC 4034: Blocks with no types present MUST NOT be included.
return nsec, len(msg), &Error{err: "empty NSEC block"}
}
if length > 32 {
return nsec, len(msg), &Error{err: "NSEC block too long"}
}
if off+length > len(msg) {
return nsec, len(msg), &Error{err: "overflowing NSEC block"}
}
// Walk the bytes in the window and extract the type bits
for j := 0; j < length; j++ {
b := msg[off+j]
// Check the bits one by one, and set the type
if b&0x80 == 0x80 {
nsec = append(nsec, uint16(window*256+j*8+0))
}
if b&0x40 == 0x40 {
nsec = append(nsec, uint16(window*256+j*8+1))
}
if b&0x20 == 0x20 {
nsec = append(nsec, uint16(window*256+j*8+2))
}
if b&0x10 == 0x10 {
nsec = append(nsec, uint16(window*256+j*8+3))
}
if b&0x8 == 0x8 {
nsec = append(nsec, uint16(window*256+j*8+4))
}
if b&0x4 == 0x4 {
nsec = append(nsec, uint16(window*256+j*8+5))
}
if b&0x2 == 0x2 {
nsec = append(nsec, uint16(window*256+j*8+6))
}
if b&0x1 == 0x1 {
nsec = append(nsec, uint16(window*256+j*8+7))
}
}
off += length
lastwindow = window
}
return nsec, off, nil
}
func packDataNsec(bitmap []uint16, msg []byte, off int) (int, error) {
if len(bitmap) == 0 {
return off, nil
}
var lastwindow, lastlength uint16
for j := 0; j < len(bitmap); j++ {
t := bitmap[j]
window := t / 256
length := (t-window*256)/8 + 1
if window > lastwindow && lastlength != 0 { // New window, jump to the new offset
off += int(lastlength) + 2
lastlength = 0
}
if window < lastwindow || length < lastlength {
return len(msg), &Error{err: "nsec bits out of order"}
}
if off+2+int(length) > len(msg) {
return len(msg), &Error{err: "overflow packing nsec"}
}
// Setting the window #
msg[off] = byte(window)
// Setting the octets length
msg[off+1] = byte(length)
// Setting the bit value for the type in the right octet
msg[off+1+int(length)] |= byte(1 << (7 - t%8))
lastwindow, lastlength = window, length
}
off += int(lastlength) + 2
return off, nil
}
func unpackDataDomainNames(msg []byte, off, end int) ([]string, int, error) {
var (
servers []string
s string
err error
)
if end > len(msg) {
return nil, len(msg), &Error{err: "overflow unpacking domain names"}
}
for off < end {
s, off, err = UnpackDomainName(msg, off)
if err != nil {
return servers, len(msg), err
}
servers = append(servers, s)
}
return servers, off, nil
}
func packDataDomainNames(names []string, msg []byte, off int, compression map[string]int, compress bool) (int, error) {
var err error
for j := 0; j < len(names); j++ {
off, err = PackDomainName(names[j], msg, off, compression, false && compress)
if err != nil {
return len(msg), err
}
}
return off, nil
}

106
vendor/github.com/miekg/dns/nsecx.go generated vendored Normal file
View File

@ -0,0 +1,106 @@
package dns
import (
"crypto/sha1"
"hash"
"strings"
)
type saltWireFmt struct {
Salt string `dns:"size-hex"`
}
// HashName hashes a string (label) according to RFC 5155. It returns the hashed string in uppercase.
func HashName(label string, ha uint8, iter uint16, salt string) string {
saltwire := new(saltWireFmt)
saltwire.Salt = salt
wire := make([]byte, DefaultMsgSize)
n, err := packSaltWire(saltwire, wire)
if err != nil {
return ""
}
wire = wire[:n]
name := make([]byte, 255)
off, err := PackDomainName(strings.ToLower(label), name, 0, nil, false)
if err != nil {
return ""
}
name = name[:off]
var s hash.Hash
switch ha {
case SHA1:
s = sha1.New()
default:
return ""
}
// k = 0
s.Write(name)
s.Write(wire)
nsec3 := s.Sum(nil)
// k > 0
for k := uint16(0); k < iter; k++ {
s.Reset()
s.Write(nsec3)
s.Write(wire)
nsec3 = s.Sum(nsec3[:0])
}
return toBase32(nsec3)
}
// Cover returns true if a name is covered by the NSEC3 record
func (rr *NSEC3) Cover(name string) bool {
nameHash := HashName(name, rr.Hash, rr.Iterations, rr.Salt)
owner := strings.ToUpper(rr.Hdr.Name)
labelIndices := Split(owner)
if len(labelIndices) < 2 {
return false
}
ownerHash := owner[:labelIndices[1]-1]
ownerZone := owner[labelIndices[1]:]
if !IsSubDomain(ownerZone, strings.ToUpper(name)) { // name is outside owner zone
return false
}
nextHash := rr.NextDomain
if ownerHash == nextHash { // empty interval
return false
}
if ownerHash > nextHash { // end of zone
if nameHash > ownerHash { // covered since there is nothing after ownerHash
return true
}
return nameHash < nextHash // if nameHash is before beginning of zone it is covered
}
if nameHash < ownerHash { // nameHash is before ownerHash, not covered
return false
}
return nameHash < nextHash // if nameHash is before nextHash is it covered (between ownerHash and nextHash)
}
// Match returns true if a name matches the NSEC3 record
func (rr *NSEC3) Match(name string) bool {
nameHash := HashName(name, rr.Hash, rr.Iterations, rr.Salt)
owner := strings.ToUpper(rr.Hdr.Name)
labelIndices := Split(owner)
if len(labelIndices) < 2 {
return false
}
ownerHash := owner[:labelIndices[1]-1]
ownerZone := owner[labelIndices[1]:]
if !IsSubDomain(ownerZone, strings.ToUpper(name)) { // name is outside owner zone
return false
}
if ownerHash == nameHash {
return true
}
return false
}
func packSaltWire(sw *saltWireFmt, msg []byte) (int, error) {
off, err := packStringHex(sw.Salt, msg, 0)
if err != nil {
return off, err
}
return off, nil
}

148
vendor/github.com/miekg/dns/privaterr.go generated vendored Normal file
View File

@ -0,0 +1,148 @@
package dns
import (
"fmt"
"strings"
)
// PrivateRdata is an interface used for implementing "Private Use" RR types, see
// RFC 6895. This allows one to experiment with new RR types, without requesting an
// official type code. Also see dns.PrivateHandle and dns.PrivateHandleRemove.
type PrivateRdata interface {
// String returns the text presentaton of the Rdata of the Private RR.
String() string
// Parse parses the Rdata of the private RR.
Parse([]string) error
// Pack is used when packing a private RR into a buffer.
Pack([]byte) (int, error)
// Unpack is used when unpacking a private RR from a buffer.
// TODO(miek): diff. signature than Pack, see edns0.go for instance.
Unpack([]byte) (int, error)
// Copy copies the Rdata.
Copy(PrivateRdata) error
// Len returns the length in octets of the Rdata.
Len() int
}
// PrivateRR represents an RR that uses a PrivateRdata user-defined type.
// It mocks normal RRs and implements dns.RR interface.
type PrivateRR struct {
Hdr RR_Header
Data PrivateRdata
}
func mkPrivateRR(rrtype uint16) *PrivateRR {
// Panics if RR is not an instance of PrivateRR.
rrfunc, ok := TypeToRR[rrtype]
if !ok {
panic(fmt.Sprintf("dns: invalid operation with Private RR type %d", rrtype))
}
anyrr := rrfunc()
switch rr := anyrr.(type) {
case *PrivateRR:
return rr
}
panic(fmt.Sprintf("dns: RR is not a PrivateRR, TypeToRR[%d] generator returned %T", rrtype, anyrr))
}
// Header return the RR header of r.
func (r *PrivateRR) Header() *RR_Header { return &r.Hdr }
func (r *PrivateRR) String() string { return r.Hdr.String() + r.Data.String() }
// Private len and copy parts to satisfy RR interface.
func (r *PrivateRR) len() int { return r.Hdr.len() + r.Data.Len() }
func (r *PrivateRR) copy() RR {
// make new RR like this:
rr := mkPrivateRR(r.Hdr.Rrtype)
rr.Hdr = r.Hdr
err := r.Data.Copy(rr.Data)
if err != nil {
panic("dns: got value that could not be used to copy Private rdata")
}
return rr
}
func (r *PrivateRR) pack(msg []byte, off int, compression map[string]int, compress bool) (int, error) {
off, err := r.Hdr.pack(msg, off, compression, compress)
if err != nil {
return off, err
}
headerEnd := off
n, err := r.Data.Pack(msg[off:])
if err != nil {
return len(msg), err
}
off += n
r.Header().Rdlength = uint16(off - headerEnd)
return off, nil
}
// PrivateHandle registers a private resource record type. It requires
// string and numeric representation of private RR type and generator function as argument.
func PrivateHandle(rtypestr string, rtype uint16, generator func() PrivateRdata) {
rtypestr = strings.ToUpper(rtypestr)
TypeToRR[rtype] = func() RR { return &PrivateRR{RR_Header{}, generator()} }
TypeToString[rtype] = rtypestr
StringToType[rtypestr] = rtype
typeToUnpack[rtype] = func(h RR_Header, msg []byte, off int) (RR, int, error) {
if noRdata(h) {
return &h, off, nil
}
var err error
rr := mkPrivateRR(h.Rrtype)
rr.Hdr = h
off1, err := rr.Data.Unpack(msg[off:])
off += off1
if err != nil {
return rr, off, err
}
return rr, off, err
}
setPrivateRR := func(h RR_Header, c chan lex, o, f string) (RR, *ParseError, string) {
rr := mkPrivateRR(h.Rrtype)
rr.Hdr = h
var l lex
text := make([]string, 0, 2) // could be 0..N elements, median is probably 1
Fetch:
for {
// TODO(miek): we could also be returning _QUOTE, this might or might not
// be an issue (basically parsing TXT becomes hard)
switch l = <-c; l.value {
case zNewline, zEOF:
break Fetch
case zString:
text = append(text, l.token)
}
}
err := rr.Data.Parse(text)
if err != nil {
return nil, &ParseError{f, err.Error(), l}, ""
}
return rr, nil, ""
}
typeToparserFunc[rtype] = parserFunc{setPrivateRR, true}
}
// PrivateHandleRemove removes defenitions required to support private RR type.
func PrivateHandleRemove(rtype uint16) {
rtypestr, ok := TypeToString[rtype]
if ok {
delete(TypeToRR, rtype)
delete(TypeToString, rtype)
delete(typeToparserFunc, rtype)
delete(StringToType, rtypestr)
delete(typeToUnpack, rtype)
}
return
}

49
vendor/github.com/miekg/dns/rawmsg.go generated vendored Normal file
View File

@ -0,0 +1,49 @@
package dns
import "encoding/binary"
// rawSetRdlength sets the rdlength in the header of
// the RR. The offset 'off' must be positioned at the
// start of the header of the RR, 'end' must be the
// end of the RR.
func rawSetRdlength(msg []byte, off, end int) bool {
l := len(msg)
Loop:
for {
if off+1 > l {
return false
}
c := int(msg[off])
off++
switch c & 0xC0 {
case 0x00:
if c == 0x00 {
// End of the domainname
break Loop
}
if off+c > l {
return false
}
off += c
case 0xC0:
// pointer, next byte included, ends domainname
off++
break Loop
}
}
// The domainname has been seen, we at the start of the fixed part in the header.
// Type is 2 bytes, class is 2 bytes, ttl 4 and then 2 bytes for the length.
off += 2 + 2 + 4
if off+2 > l {
return false
}
//off+1 is the end of the header, 'end' is the end of the rr
//so 'end' - 'off+2' is the length of the rdata
rdatalen := end - (off + 2)
if rdatalen > 0xFFFF {
return false
}
binary.BigEndian.PutUint16(msg[off:], uint16(rdatalen))
return true
}

38
vendor/github.com/miekg/dns/reverse.go generated vendored Normal file
View File

@ -0,0 +1,38 @@
package dns
// StringToType is the reverse of TypeToString, needed for string parsing.
var StringToType = reverseInt16(TypeToString)
// StringToClass is the reverse of ClassToString, needed for string parsing.
var StringToClass = reverseInt16(ClassToString)
// StringToOpcode is a map of opcodes to strings.
var StringToOpcode = reverseInt(OpcodeToString)
// StringToRcode is a map of rcodes to strings.
var StringToRcode = reverseInt(RcodeToString)
// Reverse a map
func reverseInt8(m map[uint8]string) map[string]uint8 {
n := make(map[string]uint8, len(m))
for u, s := range m {
n[s] = u
}
return n
}
func reverseInt16(m map[uint16]string) map[string]uint16 {
n := make(map[string]uint16, len(m))
for u, s := range m {
n[s] = u
}
return n
}
func reverseInt(m map[int]string) map[string]int {
n := make(map[string]int, len(m))
for u, s := range m {
n[s] = u
}
return n
}

85
vendor/github.com/miekg/dns/sanitize.go generated vendored Normal file
View File

@ -0,0 +1,85 @@
package dns
// Dedup removes identical RRs from rrs. It preserves the original ordering.
// The lowest TTL of any duplicates is used in the remaining one. Dedup modifies
// rrs.
// m is used to store the RRs temporary. If it is nil a new map will be allocated.
func Dedup(rrs []RR, m map[string]RR) []RR {
if m == nil {
m = make(map[string]RR)
}
// Save the keys, so we don't have to call normalizedString twice.
keys := make([]*string, 0, len(rrs))
for _, r := range rrs {
key := normalizedString(r)
keys = append(keys, &key)
if _, ok := m[key]; ok {
// Shortest TTL wins.
if m[key].Header().Ttl > r.Header().Ttl {
m[key].Header().Ttl = r.Header().Ttl
}
continue
}
m[key] = r
}
// If the length of the result map equals the amount of RRs we got,
// it means they were all different. We can then just return the original rrset.
if len(m) == len(rrs) {
return rrs
}
j := 0
for i, r := range rrs {
// If keys[i] lives in the map, we should copy and remove it.
if _, ok := m[*keys[i]]; ok {
delete(m, *keys[i])
rrs[j] = r
j++
}
if len(m) == 0 {
break
}
}
return rrs[:j]
}
// normalizedString returns a normalized string from r. The TTL
// is removed and the domain name is lowercased. We go from this:
// DomainName<TAB>TTL<TAB>CLASS<TAB>TYPE<TAB>RDATA to:
// lowercasename<TAB>CLASS<TAB>TYPE...
func normalizedString(r RR) string {
// A string Go DNS makes has: domainname<TAB>TTL<TAB>...
b := []byte(r.String())
// find the first non-escaped tab, then another, so we capture where the TTL lives.
esc := false
ttlStart, ttlEnd := 0, 0
for i := 0; i < len(b) && ttlEnd == 0; i++ {
switch {
case b[i] == '\\':
esc = !esc
case b[i] == '\t' && !esc:
if ttlStart == 0 {
ttlStart = i
continue
}
if ttlEnd == 0 {
ttlEnd = i
}
case b[i] >= 'A' && b[i] <= 'Z' && !esc:
b[i] += 32
default:
esc = false
}
}
// remove TTL.
copy(b[ttlStart:], b[ttlEnd:])
cut := ttlEnd - ttlStart
return string(b[:len(b)-cut])
}

1007
vendor/github.com/miekg/dns/scan.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

2203
vendor/github.com/miekg/dns/scan_rr.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

56
vendor/github.com/miekg/dns/scanner.go generated vendored Normal file
View File

@ -0,0 +1,56 @@
package dns
// Implement a simple scanner, return a byte stream from an io reader.
import (
"bufio"
"context"
"io"
"text/scanner"
)
type scan struct {
src *bufio.Reader
position scanner.Position
eof bool // Have we just seen a eof
ctx context.Context
}
func scanInit(r io.Reader) (*scan, context.CancelFunc) {
s := new(scan)
s.src = bufio.NewReader(r)
s.position.Line = 1
ctx, cancel := context.WithCancel(context.Background())
s.ctx = ctx
return s, cancel
}
// tokenText returns the next byte from the input
func (s *scan) tokenText() (byte, error) {
c, err := s.src.ReadByte()
if err != nil {
return c, err
}
select {
case <-s.ctx.Done():
return c, context.Canceled
default:
break
}
// delay the newline handling until the next token is delivered,
// fixes off-by-one errors when reporting a parse error.
if s.eof == true {
s.position.Line++
s.position.Column = 0
s.eof = false
}
if c == '\n' {
s.eof = true
return c, nil
}
s.position.Column++
return c, nil
}

809
vendor/github.com/miekg/dns/server.go generated vendored Normal file
View File

@ -0,0 +1,809 @@
// DNS server implementation.
package dns
import (
"bytes"
"crypto/tls"
"encoding/binary"
"errors"
"io"
"net"
"strings"
"sync"
"sync/atomic"
"time"
)
// Default maximum number of TCP queries before we close the socket.
const maxTCPQueries = 128
// The maximum number of idle workers.
//
// This controls the maximum number of workers that are allowed to stay
// idle waiting for incoming requests before being torn down.
//
// If this limit is reached, the server will just keep spawning new
// workers (goroutines) for each incoming request. In this case, each
// worker will only be used for a single request.
const maxIdleWorkersCount = 10000
// The maximum length of time a worker may idle for before being destroyed.
const idleWorkerTimeout = 10 * time.Second
// Handler is implemented by any value that implements ServeDNS.
type Handler interface {
ServeDNS(w ResponseWriter, r *Msg)
}
// A ResponseWriter interface is used by an DNS handler to
// construct an DNS response.
type ResponseWriter interface {
// LocalAddr returns the net.Addr of the server
LocalAddr() net.Addr
// RemoteAddr returns the net.Addr of the client that sent the current request.
RemoteAddr() net.Addr
// WriteMsg writes a reply back to the client.
WriteMsg(*Msg) error
// Write writes a raw buffer back to the client.
Write([]byte) (int, error)
// Close closes the connection.
Close() error
// TsigStatus returns the status of the Tsig.
TsigStatus() error
// TsigTimersOnly sets the tsig timers only boolean.
TsigTimersOnly(bool)
// Hijack lets the caller take over the connection.
// After a call to Hijack(), the DNS package will not do anything with the connection.
Hijack()
}
type response struct {
msg []byte
hijacked bool // connection has been hijacked by handler
tsigStatus error
tsigTimersOnly bool
tsigRequestMAC string
tsigSecret map[string]string // the tsig secrets
udp *net.UDPConn // i/o connection if UDP was used
tcp net.Conn // i/o connection if TCP was used
udpSession *SessionUDP // oob data to get egress interface right
writer Writer // writer to output the raw DNS bits
}
// ServeMux is an DNS request multiplexer. It matches the
// zone name of each incoming request against a list of
// registered patterns add calls the handler for the pattern
// that most closely matches the zone name. ServeMux is DNSSEC aware, meaning
// that queries for the DS record are redirected to the parent zone (if that
// is also registered), otherwise the child gets the query.
// ServeMux is also safe for concurrent access from multiple goroutines.
type ServeMux struct {
z map[string]Handler
m *sync.RWMutex
}
// NewServeMux allocates and returns a new ServeMux.
func NewServeMux() *ServeMux { return &ServeMux{z: make(map[string]Handler), m: new(sync.RWMutex)} }
// DefaultServeMux is the default ServeMux used by Serve.
var DefaultServeMux = NewServeMux()
// The HandlerFunc type is an adapter to allow the use of
// ordinary functions as DNS handlers. If f is a function
// with the appropriate signature, HandlerFunc(f) is a
// Handler object that calls f.
type HandlerFunc func(ResponseWriter, *Msg)
// ServeDNS calls f(w, r).
func (f HandlerFunc) ServeDNS(w ResponseWriter, r *Msg) {
f(w, r)
}
// HandleFailed returns a HandlerFunc that returns SERVFAIL for every request it gets.
func HandleFailed(w ResponseWriter, r *Msg) {
m := new(Msg)
m.SetRcode(r, RcodeServerFailure)
// does not matter if this write fails
w.WriteMsg(m)
}
func failedHandler() Handler { return HandlerFunc(HandleFailed) }
// ListenAndServe Starts a server on address and network specified Invoke handler
// for incoming queries.
func ListenAndServe(addr string, network string, handler Handler) error {
server := &Server{Addr: addr, Net: network, Handler: handler}
return server.ListenAndServe()
}
// ListenAndServeTLS acts like http.ListenAndServeTLS, more information in
// http://golang.org/pkg/net/http/#ListenAndServeTLS
func ListenAndServeTLS(addr, certFile, keyFile string, handler Handler) error {
cert, err := tls.LoadX509KeyPair(certFile, keyFile)
if err != nil {
return err
}
config := tls.Config{
Certificates: []tls.Certificate{cert},
}
server := &Server{
Addr: addr,
Net: "tcp-tls",
TLSConfig: &config,
Handler: handler,
}
return server.ListenAndServe()
}
// ActivateAndServe activates a server with a listener from systemd,
// l and p should not both be non-nil.
// If both l and p are not nil only p will be used.
// Invoke handler for incoming queries.
func ActivateAndServe(l net.Listener, p net.PacketConn, handler Handler) error {
server := &Server{Listener: l, PacketConn: p, Handler: handler}
return server.ActivateAndServe()
}
func (mux *ServeMux) match(q string, t uint16) Handler {
mux.m.RLock()
defer mux.m.RUnlock()
var handler Handler
b := make([]byte, len(q)) // worst case, one label of length q
off := 0
end := false
for {
l := len(q[off:])
for i := 0; i < l; i++ {
b[i] = q[off+i]
if b[i] >= 'A' && b[i] <= 'Z' {
b[i] |= 'a' - 'A'
}
}
if h, ok := mux.z[string(b[:l])]; ok { // causes garbage, might want to change the map key
if t != TypeDS {
return h
}
// Continue for DS to see if we have a parent too, if so delegeate to the parent
handler = h
}
off, end = NextLabel(q, off)
if end {
break
}
}
// Wildcard match, if we have found nothing try the root zone as a last resort.
if h, ok := mux.z["."]; ok {
return h
}
return handler
}
// Handle adds a handler to the ServeMux for pattern.
func (mux *ServeMux) Handle(pattern string, handler Handler) {
if pattern == "" {
panic("dns: invalid pattern " + pattern)
}
mux.m.Lock()
mux.z[Fqdn(pattern)] = handler
mux.m.Unlock()
}
// HandleFunc adds a handler function to the ServeMux for pattern.
func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Msg)) {
mux.Handle(pattern, HandlerFunc(handler))
}
// HandleRemove deregistrars the handler specific for pattern from the ServeMux.
func (mux *ServeMux) HandleRemove(pattern string) {
if pattern == "" {
panic("dns: invalid pattern " + pattern)
}
mux.m.Lock()
delete(mux.z, Fqdn(pattern))
mux.m.Unlock()
}
// ServeDNS dispatches the request to the handler whose
// pattern most closely matches the request message. If DefaultServeMux
// is used the correct thing for DS queries is done: a possible parent
// is sought.
// If no handler is found a standard SERVFAIL message is returned
// If the request message does not have exactly one question in the
// question section a SERVFAIL is returned, unlesss Unsafe is true.
func (mux *ServeMux) ServeDNS(w ResponseWriter, request *Msg) {
var h Handler
if len(request.Question) < 1 { // allow more than one question
h = failedHandler()
} else {
if h = mux.match(request.Question[0].Name, request.Question[0].Qtype); h == nil {
h = failedHandler()
}
}
h.ServeDNS(w, request)
}
// Handle registers the handler with the given pattern
// in the DefaultServeMux. The documentation for
// ServeMux explains how patterns are matched.
func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) }
// HandleRemove deregisters the handle with the given pattern
// in the DefaultServeMux.
func HandleRemove(pattern string) { DefaultServeMux.HandleRemove(pattern) }
// HandleFunc registers the handler function with the given pattern
// in the DefaultServeMux.
func HandleFunc(pattern string, handler func(ResponseWriter, *Msg)) {
DefaultServeMux.HandleFunc(pattern, handler)
}
// Writer writes raw DNS messages; each call to Write should send an entire message.
type Writer interface {
io.Writer
}
// Reader reads raw DNS messages; each call to ReadTCP or ReadUDP should return an entire message.
type Reader interface {
// ReadTCP reads a raw message from a TCP connection. Implementations may alter
// connection properties, for example the read-deadline.
ReadTCP(conn net.Conn, timeout time.Duration) ([]byte, error)
// ReadUDP reads a raw message from a UDP connection. Implementations may alter
// connection properties, for example the read-deadline.
ReadUDP(conn *net.UDPConn, timeout time.Duration) ([]byte, *SessionUDP, error)
}
// defaultReader is an adapter for the Server struct that implements the Reader interface
// using the readTCP and readUDP func of the embedded Server.
type defaultReader struct {
*Server
}
func (dr *defaultReader) ReadTCP(conn net.Conn, timeout time.Duration) ([]byte, error) {
return dr.readTCP(conn, timeout)
}
func (dr *defaultReader) ReadUDP(conn *net.UDPConn, timeout time.Duration) ([]byte, *SessionUDP, error) {
return dr.readUDP(conn, timeout)
}
// DecorateReader is a decorator hook for extending or supplanting the functionality of a Reader.
// Implementations should never return a nil Reader.
type DecorateReader func(Reader) Reader
// DecorateWriter is a decorator hook for extending or supplanting the functionality of a Writer.
// Implementations should never return a nil Writer.
type DecorateWriter func(Writer) Writer
// A Server defines parameters for running an DNS server.
type Server struct {
// Address to listen on, ":dns" if empty.
Addr string
// if "tcp" or "tcp-tls" (DNS over TLS) it will invoke a TCP listener, otherwise an UDP one
Net string
// TCP Listener to use, this is to aid in systemd's socket activation.
Listener net.Listener
// TLS connection configuration
TLSConfig *tls.Config
// UDP "Listener" to use, this is to aid in systemd's socket activation.
PacketConn net.PacketConn
// Handler to invoke, dns.DefaultServeMux if nil.
Handler Handler
// Default buffer size to use to read incoming UDP messages. If not set
// it defaults to MinMsgSize (512 B).
UDPSize int
// The net.Conn.SetReadTimeout value for new connections, defaults to 2 * time.Second.
ReadTimeout time.Duration
// The net.Conn.SetWriteTimeout value for new connections, defaults to 2 * time.Second.
WriteTimeout time.Duration
// TCP idle timeout for multiple queries, if nil, defaults to 8 * time.Second (RFC 5966).
IdleTimeout func() time.Duration
// Secret(s) for Tsig map[<zonename>]<base64 secret>. The zonename must be in canonical form (lowercase, fqdn, see RFC 4034 Section 6.2).
TsigSecret map[string]string
// Unsafe instructs the server to disregard any sanity checks and directly hand the message to
// the handler. It will specifically not check if the query has the QR bit not set.
Unsafe bool
// If NotifyStartedFunc is set it is called once the server has started listening.
NotifyStartedFunc func()
// DecorateReader is optional, allows customization of the process that reads raw DNS messages.
DecorateReader DecorateReader
// DecorateWriter is optional, allows customization of the process that writes raw DNS messages.
DecorateWriter DecorateWriter
// Maximum number of TCP queries before we close the socket. Default is maxTCPQueries (unlimited if -1).
MaxTCPQueries int
// Whether to set the SO_REUSEPORT socket option, allowing multiple listeners to be bound to a single address.
// It is only supported on go1.11+ and when using ListenAndServe.
ReusePort bool
// UDP packet or TCP connection queue
queue chan *response
// Workers count
workersCount int32
// Shutdown handling
lock sync.RWMutex
started bool
// A pool for UDP message buffers.
udpPool sync.Pool
}
func (srv *Server) isStarted() bool {
srv.lock.RLock()
started := srv.started
srv.lock.RUnlock()
return started
}
func (srv *Server) worker(w *response) {
srv.serve(w)
for {
count := atomic.LoadInt32(&srv.workersCount)
if count > maxIdleWorkersCount {
return
}
if atomic.CompareAndSwapInt32(&srv.workersCount, count, count+1) {
break
}
}
defer atomic.AddInt32(&srv.workersCount, -1)
inUse := false
timeout := time.NewTimer(idleWorkerTimeout)
defer timeout.Stop()
LOOP:
for {
select {
case w, ok := <-srv.queue:
if !ok {
break LOOP
}
inUse = true
srv.serve(w)
case <-timeout.C:
if !inUse {
break LOOP
}
inUse = false
timeout.Reset(idleWorkerTimeout)
}
}
}
func (srv *Server) spawnWorker(w *response) {
select {
case srv.queue <- w:
default:
go srv.worker(w)
}
}
func makeUDPBuffer(size int) func() interface{} {
return func() interface{} {
return make([]byte, size)
}
}
func (srv *Server) init() {
srv.queue = make(chan *response)
if srv.UDPSize == 0 {
srv.UDPSize = MinMsgSize
}
srv.udpPool.New = makeUDPBuffer(srv.UDPSize)
}
func unlockOnce(l sync.Locker) func() {
var once sync.Once
return func() { once.Do(l.Unlock) }
}
// ListenAndServe starts a nameserver on the configured address in *Server.
func (srv *Server) ListenAndServe() error {
unlock := unlockOnce(&srv.lock)
srv.lock.Lock()
defer unlock()
if srv.started {
return &Error{err: "server already started"}
}
addr := srv.Addr
if addr == "" {
addr = ":domain"
}
srv.init()
defer close(srv.queue)
switch srv.Net {
case "tcp", "tcp4", "tcp6":
l, err := listenTCP(srv.Net, addr, srv.ReusePort)
if err != nil {
return err
}
srv.Listener = l
srv.started = true
unlock()
return srv.serveTCP(l)
case "tcp-tls", "tcp4-tls", "tcp6-tls":
if srv.TLSConfig == nil || (len(srv.TLSConfig.Certificates) == 0 && srv.TLSConfig.GetCertificate == nil) {
return errors.New("dns: neither Certificates nor GetCertificate set in Config")
}
network := strings.TrimSuffix(srv.Net, "-tls")
l, err := listenTCP(network, addr, srv.ReusePort)
if err != nil {
return err
}
l = tls.NewListener(l, srv.TLSConfig)
srv.Listener = l
srv.started = true
unlock()
return srv.serveTCP(l)
case "udp", "udp4", "udp6":
l, err := listenUDP(srv.Net, addr, srv.ReusePort)
if err != nil {
return err
}
u := l.(*net.UDPConn)
if e := setUDPSocketOptions(u); e != nil {
return e
}
srv.PacketConn = l
srv.started = true
unlock()
return srv.serveUDP(u)
}
return &Error{err: "bad network"}
}
// ActivateAndServe starts a nameserver with the PacketConn or Listener
// configured in *Server. Its main use is to start a server from systemd.
func (srv *Server) ActivateAndServe() error {
unlock := unlockOnce(&srv.lock)
srv.lock.Lock()
defer unlock()
if srv.started {
return &Error{err: "server already started"}
}
srv.init()
defer close(srv.queue)
pConn := srv.PacketConn
l := srv.Listener
if pConn != nil {
// Check PacketConn interface's type is valid and value
// is not nil
if t, ok := pConn.(*net.UDPConn); ok && t != nil {
if e := setUDPSocketOptions(t); e != nil {
return e
}
srv.started = true
unlock()
return srv.serveUDP(t)
}
}
if l != nil {
srv.started = true
unlock()
return srv.serveTCP(l)
}
return &Error{err: "bad listeners"}
}
// Shutdown shuts down a server. After a call to Shutdown, ListenAndServe and
// ActivateAndServe will return.
func (srv *Server) Shutdown() error {
srv.lock.Lock()
if !srv.started {
srv.lock.Unlock()
return &Error{err: "server not started"}
}
srv.started = false
srv.lock.Unlock()
if srv.PacketConn != nil {
srv.PacketConn.Close()
}
if srv.Listener != nil {
srv.Listener.Close()
}
return nil
}
// getReadTimeout is a helper func to use system timeout if server did not intend to change it.
func (srv *Server) getReadTimeout() time.Duration {
rtimeout := dnsTimeout
if srv.ReadTimeout != 0 {
rtimeout = srv.ReadTimeout
}
return rtimeout
}
// serveTCP starts a TCP listener for the server.
func (srv *Server) serveTCP(l net.Listener) error {
defer l.Close()
if srv.NotifyStartedFunc != nil {
srv.NotifyStartedFunc()
}
for {
rw, err := l.Accept()
if !srv.isStarted() {
return nil
}
if err != nil {
if neterr, ok := err.(net.Error); ok && neterr.Temporary() {
continue
}
return err
}
srv.spawnWorker(&response{tsigSecret: srv.TsigSecret, tcp: rw})
}
}
// serveUDP starts a UDP listener for the server.
func (srv *Server) serveUDP(l *net.UDPConn) error {
defer l.Close()
if srv.NotifyStartedFunc != nil {
srv.NotifyStartedFunc()
}
reader := Reader(&defaultReader{srv})
if srv.DecorateReader != nil {
reader = srv.DecorateReader(reader)
}
rtimeout := srv.getReadTimeout()
// deadline is not used here
for {
m, s, err := reader.ReadUDP(l, rtimeout)
if !srv.isStarted() {
return nil
}
if err != nil {
if netErr, ok := err.(net.Error); ok && netErr.Temporary() {
continue
}
return err
}
if len(m) < headerSize {
if cap(m) == srv.UDPSize {
srv.udpPool.Put(m[:srv.UDPSize])
}
continue
}
srv.spawnWorker(&response{msg: m, tsigSecret: srv.TsigSecret, udp: l, udpSession: s})
}
}
func (srv *Server) serve(w *response) {
if srv.DecorateWriter != nil {
w.writer = srv.DecorateWriter(w)
} else {
w.writer = w
}
if w.udp != nil {
// serve UDP
srv.serveDNS(w)
return
}
reader := Reader(&defaultReader{srv})
if srv.DecorateReader != nil {
reader = srv.DecorateReader(reader)
}
defer func() {
if !w.hijacked {
w.Close()
}
}()
idleTimeout := tcpIdleTimeout
if srv.IdleTimeout != nil {
idleTimeout = srv.IdleTimeout()
}
timeout := srv.getReadTimeout()
limit := srv.MaxTCPQueries
if limit == 0 {
limit = maxTCPQueries
}
for q := 0; q < limit || limit == -1; q++ {
var err error
w.msg, err = reader.ReadTCP(w.tcp, timeout)
if err != nil {
// TODO(tmthrgd): handle error
break
}
srv.serveDNS(w)
if w.tcp == nil {
break // Close() was called
}
if w.hijacked {
break // client will call Close() themselves
}
// The first read uses the read timeout, the rest use the
// idle timeout.
timeout = idleTimeout
}
}
func (srv *Server) serveDNS(w *response) {
req := new(Msg)
err := req.Unpack(w.msg)
if w.udp != nil && cap(w.msg) == srv.UDPSize {
srv.udpPool.Put(w.msg[:srv.UDPSize])
}
w.msg = nil
if err != nil { // Send a FormatError back
x := new(Msg)
x.SetRcodeFormatError(req)
w.WriteMsg(x)
return
}
if !srv.Unsafe && req.Response {
return
}
w.tsigStatus = nil
if w.tsigSecret != nil {
if t := req.IsTsig(); t != nil {
if secret, ok := w.tsigSecret[t.Hdr.Name]; ok {
w.tsigStatus = TsigVerify(w.msg, secret, "", false)
} else {
w.tsigStatus = ErrSecret
}
w.tsigTimersOnly = false
w.tsigRequestMAC = req.Extra[len(req.Extra)-1].(*TSIG).MAC
}
}
handler := srv.Handler
if handler == nil {
handler = DefaultServeMux
}
handler.ServeDNS(w, req) // Writes back to the client
}
func (srv *Server) readTCP(conn net.Conn, timeout time.Duration) ([]byte, error) {
conn.SetReadDeadline(time.Now().Add(timeout))
l := make([]byte, 2)
n, err := conn.Read(l)
if err != nil || n != 2 {
if err != nil {
return nil, err
}
return nil, ErrShortRead
}
length := binary.BigEndian.Uint16(l)
if length == 0 {
return nil, ErrShortRead
}
m := make([]byte, int(length))
n, err = conn.Read(m[:int(length)])
if err != nil || n == 0 {
if err != nil {
return nil, err
}
return nil, ErrShortRead
}
i := n
for i < int(length) {
j, err := conn.Read(m[i:int(length)])
if err != nil {
return nil, err
}
i += j
}
n = i
m = m[:n]
return m, nil
}
func (srv *Server) readUDP(conn *net.UDPConn, timeout time.Duration) ([]byte, *SessionUDP, error) {
conn.SetReadDeadline(time.Now().Add(timeout))
m := srv.udpPool.Get().([]byte)
n, s, err := ReadFromSessionUDP(conn, m)
if err != nil {
srv.udpPool.Put(m)
return nil, nil, err
}
m = m[:n]
return m, s, nil
}
// WriteMsg implements the ResponseWriter.WriteMsg method.
func (w *response) WriteMsg(m *Msg) (err error) {
var data []byte
if w.tsigSecret != nil { // if no secrets, dont check for the tsig (which is a longer check)
if t := m.IsTsig(); t != nil {
data, w.tsigRequestMAC, err = TsigGenerate(m, w.tsigSecret[t.Hdr.Name], w.tsigRequestMAC, w.tsigTimersOnly)
if err != nil {
return err
}
_, err = w.writer.Write(data)
return err
}
}
data, err = m.Pack()
if err != nil {
return err
}
_, err = w.writer.Write(data)
return err
}
// Write implements the ResponseWriter.Write method.
func (w *response) Write(m []byte) (int, error) {
switch {
case w.udp != nil:
n, err := WriteToSessionUDP(w.udp, m, w.udpSession)
return n, err
case w.tcp != nil:
lm := len(m)
if lm < 2 {
return 0, io.ErrShortBuffer
}
if lm > MaxMsgSize {
return 0, &Error{err: "message too large"}
}
l := make([]byte, 2, 2+lm)
binary.BigEndian.PutUint16(l, uint16(lm))
m = append(l, m...)
n, err := io.Copy(w.tcp, bytes.NewReader(m))
return int(n), err
}
panic("not reached")
}
// LocalAddr implements the ResponseWriter.LocalAddr method.
func (w *response) LocalAddr() net.Addr {
if w.tcp != nil {
return w.tcp.LocalAddr()
}
return w.udp.LocalAddr()
}
// RemoteAddr implements the ResponseWriter.RemoteAddr method.
func (w *response) RemoteAddr() net.Addr {
if w.tcp != nil {
return w.tcp.RemoteAddr()
}
return w.udpSession.RemoteAddr()
}
// TsigStatus implements the ResponseWriter.TsigStatus method.
func (w *response) TsigStatus() error { return w.tsigStatus }
// TsigTimersOnly implements the ResponseWriter.TsigTimersOnly method.
func (w *response) TsigTimersOnly(b bool) { w.tsigTimersOnly = b }
// Hijack implements the ResponseWriter.Hijack method.
func (w *response) Hijack() { w.hijacked = true }
// Close implements the ResponseWriter.Close method
func (w *response) Close() error {
// Can't close the udp conn, as that is actually the listener.
if w.tcp != nil {
e := w.tcp.Close()
w.tcp = nil
return e
}
return nil
}

218
vendor/github.com/miekg/dns/sig0.go generated vendored Normal file
View File

@ -0,0 +1,218 @@
package dns
import (
"crypto"
"crypto/dsa"
"crypto/ecdsa"
"crypto/rsa"
"encoding/binary"
"math/big"
"strings"
"time"
)
// Sign signs a dns.Msg. It fills the signature with the appropriate data.
// The SIG record should have the SignerName, KeyTag, Algorithm, Inception
// and Expiration set.
func (rr *SIG) Sign(k crypto.Signer, m *Msg) ([]byte, error) {
if k == nil {
return nil, ErrPrivKey
}
if rr.KeyTag == 0 || len(rr.SignerName) == 0 || rr.Algorithm == 0 {
return nil, ErrKey
}
rr.Header().Rrtype = TypeSIG
rr.Header().Class = ClassANY
rr.Header().Ttl = 0
rr.Header().Name = "."
rr.OrigTtl = 0
rr.TypeCovered = 0
rr.Labels = 0
buf := make([]byte, m.Len()+rr.len())
mbuf, err := m.PackBuffer(buf)
if err != nil {
return nil, err
}
if &buf[0] != &mbuf[0] {
return nil, ErrBuf
}
off, err := PackRR(rr, buf, len(mbuf), nil, false)
if err != nil {
return nil, err
}
buf = buf[:off:cap(buf)]
hash, ok := AlgorithmToHash[rr.Algorithm]
if !ok {
return nil, ErrAlg
}
hasher := hash.New()
// Write SIG rdata
hasher.Write(buf[len(mbuf)+1+2+2+4+2:])
// Write message
hasher.Write(buf[:len(mbuf)])
signature, err := sign(k, hasher.Sum(nil), hash, rr.Algorithm)
if err != nil {
return nil, err
}
rr.Signature = toBase64(signature)
buf = append(buf, signature...)
if len(buf) > int(^uint16(0)) {
return nil, ErrBuf
}
// Adjust sig data length
rdoff := len(mbuf) + 1 + 2 + 2 + 4
rdlen := binary.BigEndian.Uint16(buf[rdoff:])
rdlen += uint16(len(signature))
binary.BigEndian.PutUint16(buf[rdoff:], rdlen)
// Adjust additional count
adc := binary.BigEndian.Uint16(buf[10:])
adc++
binary.BigEndian.PutUint16(buf[10:], adc)
return buf, nil
}
// Verify validates the message buf using the key k.
// It's assumed that buf is a valid message from which rr was unpacked.
func (rr *SIG) Verify(k *KEY, buf []byte) error {
if k == nil {
return ErrKey
}
if rr.KeyTag == 0 || len(rr.SignerName) == 0 || rr.Algorithm == 0 {
return ErrKey
}
var hash crypto.Hash
switch rr.Algorithm {
case DSA, RSASHA1:
hash = crypto.SHA1
case RSASHA256, ECDSAP256SHA256:
hash = crypto.SHA256
case ECDSAP384SHA384:
hash = crypto.SHA384
case RSASHA512:
hash = crypto.SHA512
default:
return ErrAlg
}
hasher := hash.New()
buflen := len(buf)
qdc := binary.BigEndian.Uint16(buf[4:])
anc := binary.BigEndian.Uint16(buf[6:])
auc := binary.BigEndian.Uint16(buf[8:])
adc := binary.BigEndian.Uint16(buf[10:])
offset := 12
var err error
for i := uint16(0); i < qdc && offset < buflen; i++ {
_, offset, err = UnpackDomainName(buf, offset)
if err != nil {
return err
}
// Skip past Type and Class
offset += 2 + 2
}
for i := uint16(1); i < anc+auc+adc && offset < buflen; i++ {
_, offset, err = UnpackDomainName(buf, offset)
if err != nil {
return err
}
// Skip past Type, Class and TTL
offset += 2 + 2 + 4
if offset+1 >= buflen {
continue
}
var rdlen uint16
rdlen = binary.BigEndian.Uint16(buf[offset:])
offset += 2
offset += int(rdlen)
}
if offset >= buflen {
return &Error{err: "overflowing unpacking signed message"}
}
// offset should be just prior to SIG
bodyend := offset
// owner name SHOULD be root
_, offset, err = UnpackDomainName(buf, offset)
if err != nil {
return err
}
// Skip Type, Class, TTL, RDLen
offset += 2 + 2 + 4 + 2
sigstart := offset
// Skip Type Covered, Algorithm, Labels, Original TTL
offset += 2 + 1 + 1 + 4
if offset+4+4 >= buflen {
return &Error{err: "overflow unpacking signed message"}
}
expire := binary.BigEndian.Uint32(buf[offset:])
offset += 4
incept := binary.BigEndian.Uint32(buf[offset:])
offset += 4
now := uint32(time.Now().Unix())
if now < incept || now > expire {
return ErrTime
}
// Skip key tag
offset += 2
var signername string
signername, offset, err = UnpackDomainName(buf, offset)
if err != nil {
return err
}
// If key has come from the DNS name compression might
// have mangled the case of the name
if strings.ToLower(signername) != strings.ToLower(k.Header().Name) {
return &Error{err: "signer name doesn't match key name"}
}
sigend := offset
hasher.Write(buf[sigstart:sigend])
hasher.Write(buf[:10])
hasher.Write([]byte{
byte((adc - 1) << 8),
byte(adc - 1),
})
hasher.Write(buf[12:bodyend])
hashed := hasher.Sum(nil)
sig := buf[sigend:]
switch k.Algorithm {
case DSA:
pk := k.publicKeyDSA()
sig = sig[1:]
r := big.NewInt(0)
r.SetBytes(sig[:len(sig)/2])
s := big.NewInt(0)
s.SetBytes(sig[len(sig)/2:])
if pk != nil {
if dsa.Verify(pk, hashed, r, s) {
return nil
}
return ErrSig
}
case RSASHA1, RSASHA256, RSASHA512:
pk := k.publicKeyRSA()
if pk != nil {
return rsa.VerifyPKCS1v15(pk, hash, hashed, sig)
}
case ECDSAP256SHA256, ECDSAP384SHA384:
pk := k.publicKeyECDSA()
r := big.NewInt(0)
r.SetBytes(sig[:len(sig)/2])
s := big.NewInt(0)
s.SetBytes(sig[len(sig)/2:])
if pk != nil {
if ecdsa.Verify(pk, hashed, r, s) {
return nil
}
return ErrSig
}
}
return ErrKeyAlg
}

57
vendor/github.com/miekg/dns/singleinflight.go generated vendored Normal file
View File

@ -0,0 +1,57 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Adapted for dns package usage by Miek Gieben.
package dns
import "sync"
import "time"
// call is an in-flight or completed singleflight.Do call
type call struct {
wg sync.WaitGroup
val *Msg
rtt time.Duration
err error
dups int
}
// singleflight represents a class of work and forms a namespace in
// which units of work can be executed with duplicate suppression.
type singleflight struct {
sync.Mutex // protects m
m map[string]*call // lazily initialized
}
// Do executes and returns the results of the given function, making
// sure that only one execution is in-flight for a given key at a
// time. If a duplicate comes in, the duplicate caller waits for the
// original to complete and receives the same results.
// The return value shared indicates whether v was given to multiple callers.
func (g *singleflight) Do(key string, fn func() (*Msg, time.Duration, error)) (v *Msg, rtt time.Duration, err error, shared bool) {
g.Lock()
if g.m == nil {
g.m = make(map[string]*call)
}
if c, ok := g.m[key]; ok {
c.dups++
g.Unlock()
c.wg.Wait()
return c.val, c.rtt, c.err, true
}
c := new(call)
c.wg.Add(1)
g.m[key] = c
g.Unlock()
c.val, c.rtt, c.err = fn()
c.wg.Done()
g.Lock()
delete(g.m, key)
g.Unlock()
return c.val, c.rtt, c.err, c.dups > 0
}

47
vendor/github.com/miekg/dns/smimea.go generated vendored Normal file
View File

@ -0,0 +1,47 @@
package dns
import (
"crypto/sha256"
"crypto/x509"
"encoding/hex"
)
// Sign creates a SMIMEA record from an SSL certificate.
func (r *SMIMEA) Sign(usage, selector, matchingType int, cert *x509.Certificate) (err error) {
r.Hdr.Rrtype = TypeSMIMEA
r.Usage = uint8(usage)
r.Selector = uint8(selector)
r.MatchingType = uint8(matchingType)
r.Certificate, err = CertificateToDANE(r.Selector, r.MatchingType, cert)
if err != nil {
return err
}
return nil
}
// Verify verifies a SMIMEA record against an SSL certificate. If it is OK
// a nil error is returned.
func (r *SMIMEA) Verify(cert *x509.Certificate) error {
c, err := CertificateToDANE(r.Selector, r.MatchingType, cert)
if err != nil {
return err // Not also ErrSig?
}
if r.Certificate == c {
return nil
}
return ErrSig // ErrSig, really?
}
// SMIMEAName returns the ownername of a SMIMEA resource record as per the
// format specified in RFC 'draft-ietf-dane-smime-12' Section 2 and 3
func SMIMEAName(email, domain string) (string, error) {
hasher := sha256.New()
hasher.Write([]byte(email))
// RFC Section 3: "The local-part is hashed using the SHA2-256
// algorithm with the hash truncated to 28 octets and
// represented in its hexadecimal representation to become the
// left-most label in the prepared domain name"
return hex.EncodeToString(hasher.Sum(nil)[:28]) + "." + "_smimecert." + domain, nil
}

47
vendor/github.com/miekg/dns/tlsa.go generated vendored Normal file
View File

@ -0,0 +1,47 @@
package dns
import (
"crypto/x509"
"net"
"strconv"
)
// Sign creates a TLSA record from an SSL certificate.
func (r *TLSA) Sign(usage, selector, matchingType int, cert *x509.Certificate) (err error) {
r.Hdr.Rrtype = TypeTLSA
r.Usage = uint8(usage)
r.Selector = uint8(selector)
r.MatchingType = uint8(matchingType)
r.Certificate, err = CertificateToDANE(r.Selector, r.MatchingType, cert)
if err != nil {
return err
}
return nil
}
// Verify verifies a TLSA record against an SSL certificate. If it is OK
// a nil error is returned.
func (r *TLSA) Verify(cert *x509.Certificate) error {
c, err := CertificateToDANE(r.Selector, r.MatchingType, cert)
if err != nil {
return err // Not also ErrSig?
}
if r.Certificate == c {
return nil
}
return ErrSig // ErrSig, really?
}
// TLSAName returns the ownername of a TLSA resource record as per the
// rules specified in RFC 6698, Section 3.
func TLSAName(name, service, network string) (string, error) {
if !IsFqdn(name) {
return "", ErrFqdn
}
p, err := net.LookupPort(network, service)
if err != nil {
return "", err
}
return "_" + strconv.Itoa(p) + "._" + network + "." + name, nil
}

386
vendor/github.com/miekg/dns/tsig.go generated vendored Normal file
View File

@ -0,0 +1,386 @@
package dns
import (
"crypto/hmac"
"crypto/md5"
"crypto/sha1"
"crypto/sha256"
"crypto/sha512"
"encoding/binary"
"encoding/hex"
"hash"
"strconv"
"strings"
"time"
)
// HMAC hashing codes. These are transmitted as domain names.
const (
HmacMD5 = "hmac-md5.sig-alg.reg.int."
HmacSHA1 = "hmac-sha1."
HmacSHA256 = "hmac-sha256."
HmacSHA512 = "hmac-sha512."
)
// TSIG is the RR the holds the transaction signature of a message.
// See RFC 2845 and RFC 4635.
type TSIG struct {
Hdr RR_Header
Algorithm string `dns:"domain-name"`
TimeSigned uint64 `dns:"uint48"`
Fudge uint16
MACSize uint16
MAC string `dns:"size-hex:MACSize"`
OrigId uint16
Error uint16
OtherLen uint16
OtherData string `dns:"size-hex:OtherLen"`
}
// TSIG has no official presentation format, but this will suffice.
func (rr *TSIG) String() string {
s := "\n;; TSIG PSEUDOSECTION:\n"
s += rr.Hdr.String() +
" " + rr.Algorithm +
" " + tsigTimeToString(rr.TimeSigned) +
" " + strconv.Itoa(int(rr.Fudge)) +
" " + strconv.Itoa(int(rr.MACSize)) +
" " + strings.ToUpper(rr.MAC) +
" " + strconv.Itoa(int(rr.OrigId)) +
" " + strconv.Itoa(int(rr.Error)) + // BIND prints NOERROR
" " + strconv.Itoa(int(rr.OtherLen)) +
" " + rr.OtherData
return s
}
// The following values must be put in wireformat, so that the MAC can be calculated.
// RFC 2845, section 3.4.2. TSIG Variables.
type tsigWireFmt struct {
// From RR_Header
Name string `dns:"domain-name"`
Class uint16
Ttl uint32
// Rdata of the TSIG
Algorithm string `dns:"domain-name"`
TimeSigned uint64 `dns:"uint48"`
Fudge uint16
// MACSize, MAC and OrigId excluded
Error uint16
OtherLen uint16
OtherData string `dns:"size-hex:OtherLen"`
}
// If we have the MAC use this type to convert it to wiredata. Section 3.4.3. Request MAC
type macWireFmt struct {
MACSize uint16
MAC string `dns:"size-hex:MACSize"`
}
// 3.3. Time values used in TSIG calculations
type timerWireFmt struct {
TimeSigned uint64 `dns:"uint48"`
Fudge uint16
}
// TsigGenerate fills out the TSIG record attached to the message.
// The message should contain
// a "stub" TSIG RR with the algorithm, key name (owner name of the RR),
// time fudge (defaults to 300 seconds) and the current time
// The TSIG MAC is saved in that Tsig RR.
// When TsigGenerate is called for the first time requestMAC is set to the empty string and
// timersOnly is false.
// If something goes wrong an error is returned, otherwise it is nil.
func TsigGenerate(m *Msg, secret, requestMAC string, timersOnly bool) ([]byte, string, error) {
if m.IsTsig() == nil {
panic("dns: TSIG not last RR in additional")
}
// If we barf here, the caller is to blame
rawsecret, err := fromBase64([]byte(secret))
if err != nil {
return nil, "", err
}
rr := m.Extra[len(m.Extra)-1].(*TSIG)
m.Extra = m.Extra[0 : len(m.Extra)-1] // kill the TSIG from the msg
mbuf, err := m.Pack()
if err != nil {
return nil, "", err
}
buf := tsigBuffer(mbuf, rr, requestMAC, timersOnly)
t := new(TSIG)
var h hash.Hash
switch strings.ToLower(rr.Algorithm) {
case HmacMD5:
h = hmac.New(md5.New, []byte(rawsecret))
case HmacSHA1:
h = hmac.New(sha1.New, []byte(rawsecret))
case HmacSHA256:
h = hmac.New(sha256.New, []byte(rawsecret))
case HmacSHA512:
h = hmac.New(sha512.New, []byte(rawsecret))
default:
return nil, "", ErrKeyAlg
}
h.Write(buf)
t.MAC = hex.EncodeToString(h.Sum(nil))
t.MACSize = uint16(len(t.MAC) / 2) // Size is half!
t.Hdr = RR_Header{Name: rr.Hdr.Name, Rrtype: TypeTSIG, Class: ClassANY, Ttl: 0}
t.Fudge = rr.Fudge
t.TimeSigned = rr.TimeSigned
t.Algorithm = rr.Algorithm
t.OrigId = m.Id
tbuf := make([]byte, t.len())
if off, err := PackRR(t, tbuf, 0, nil, false); err == nil {
tbuf = tbuf[:off] // reset to actual size used
} else {
return nil, "", err
}
mbuf = append(mbuf, tbuf...)
// Update the ArCount directly in the buffer.
binary.BigEndian.PutUint16(mbuf[10:], uint16(len(m.Extra)+1))
return mbuf, t.MAC, nil
}
// TsigVerify verifies the TSIG on a message.
// If the signature does not validate err contains the
// error, otherwise it is nil.
func TsigVerify(msg []byte, secret, requestMAC string, timersOnly bool) error {
rawsecret, err := fromBase64([]byte(secret))
if err != nil {
return err
}
// Strip the TSIG from the incoming msg
stripped, tsig, err := stripTsig(msg)
if err != nil {
return err
}
msgMAC, err := hex.DecodeString(tsig.MAC)
if err != nil {
return err
}
buf := tsigBuffer(stripped, tsig, requestMAC, timersOnly)
// Fudge factor works both ways. A message can arrive before it was signed because
// of clock skew.
now := uint64(time.Now().Unix())
ti := now - tsig.TimeSigned
if now < tsig.TimeSigned {
ti = tsig.TimeSigned - now
}
if uint64(tsig.Fudge) < ti {
return ErrTime
}
var h hash.Hash
switch strings.ToLower(tsig.Algorithm) {
case HmacMD5:
h = hmac.New(md5.New, rawsecret)
case HmacSHA1:
h = hmac.New(sha1.New, rawsecret)
case HmacSHA256:
h = hmac.New(sha256.New, rawsecret)
case HmacSHA512:
h = hmac.New(sha512.New, rawsecret)
default:
return ErrKeyAlg
}
h.Write(buf)
if !hmac.Equal(h.Sum(nil), msgMAC) {
return ErrSig
}
return nil
}
// Create a wiredata buffer for the MAC calculation.
func tsigBuffer(msgbuf []byte, rr *TSIG, requestMAC string, timersOnly bool) []byte {
var buf []byte
if rr.TimeSigned == 0 {
rr.TimeSigned = uint64(time.Now().Unix())
}
if rr.Fudge == 0 {
rr.Fudge = 300 // Standard (RFC) default.
}
// Replace message ID in header with original ID from TSIG
binary.BigEndian.PutUint16(msgbuf[0:2], rr.OrigId)
if requestMAC != "" {
m := new(macWireFmt)
m.MACSize = uint16(len(requestMAC) / 2)
m.MAC = requestMAC
buf = make([]byte, len(requestMAC)) // long enough
n, _ := packMacWire(m, buf)
buf = buf[:n]
}
tsigvar := make([]byte, DefaultMsgSize)
if timersOnly {
tsig := new(timerWireFmt)
tsig.TimeSigned = rr.TimeSigned
tsig.Fudge = rr.Fudge
n, _ := packTimerWire(tsig, tsigvar)
tsigvar = tsigvar[:n]
} else {
tsig := new(tsigWireFmt)
tsig.Name = strings.ToLower(rr.Hdr.Name)
tsig.Class = ClassANY
tsig.Ttl = rr.Hdr.Ttl
tsig.Algorithm = strings.ToLower(rr.Algorithm)
tsig.TimeSigned = rr.TimeSigned
tsig.Fudge = rr.Fudge
tsig.Error = rr.Error
tsig.OtherLen = rr.OtherLen
tsig.OtherData = rr.OtherData
n, _ := packTsigWire(tsig, tsigvar)
tsigvar = tsigvar[:n]
}
if requestMAC != "" {
x := append(buf, msgbuf...)
buf = append(x, tsigvar...)
} else {
buf = append(msgbuf, tsigvar...)
}
return buf
}
// Strip the TSIG from the raw message.
func stripTsig(msg []byte) ([]byte, *TSIG, error) {
// Copied from msg.go's Unpack() Header, but modified.
var (
dh Header
err error
)
off, tsigoff := 0, 0
if dh, off, err = unpackMsgHdr(msg, off); err != nil {
return nil, nil, err
}
if dh.Arcount == 0 {
return nil, nil, ErrNoSig
}
// Rcode, see msg.go Unpack()
if int(dh.Bits&0xF) == RcodeNotAuth {
return nil, nil, ErrAuth
}
for i := 0; i < int(dh.Qdcount); i++ {
_, off, err = unpackQuestion(msg, off)
if err != nil {
return nil, nil, err
}
}
_, off, err = unpackRRslice(int(dh.Ancount), msg, off)
if err != nil {
return nil, nil, err
}
_, off, err = unpackRRslice(int(dh.Nscount), msg, off)
if err != nil {
return nil, nil, err
}
rr := new(TSIG)
var extra RR
for i := 0; i < int(dh.Arcount); i++ {
tsigoff = off
extra, off, err = UnpackRR(msg, off)
if err != nil {
return nil, nil, err
}
if extra.Header().Rrtype == TypeTSIG {
rr = extra.(*TSIG)
// Adjust Arcount.
arcount := binary.BigEndian.Uint16(msg[10:])
binary.BigEndian.PutUint16(msg[10:], arcount-1)
break
}
}
if rr == nil {
return nil, nil, ErrNoSig
}
return msg[:tsigoff], rr, nil
}
// Translate the TSIG time signed into a date. There is no
// need for RFC1982 calculations as this date is 48 bits.
func tsigTimeToString(t uint64) string {
ti := time.Unix(int64(t), 0).UTC()
return ti.Format("20060102150405")
}
func packTsigWire(tw *tsigWireFmt, msg []byte) (int, error) {
// copied from zmsg.go TSIG packing
// RR_Header
off, err := PackDomainName(tw.Name, msg, 0, nil, false)
if err != nil {
return off, err
}
off, err = packUint16(tw.Class, msg, off)
if err != nil {
return off, err
}
off, err = packUint32(tw.Ttl, msg, off)
if err != nil {
return off, err
}
off, err = PackDomainName(tw.Algorithm, msg, off, nil, false)
if err != nil {
return off, err
}
off, err = packUint48(tw.TimeSigned, msg, off)
if err != nil {
return off, err
}
off, err = packUint16(tw.Fudge, msg, off)
if err != nil {
return off, err
}
off, err = packUint16(tw.Error, msg, off)
if err != nil {
return off, err
}
off, err = packUint16(tw.OtherLen, msg, off)
if err != nil {
return off, err
}
off, err = packStringHex(tw.OtherData, msg, off)
if err != nil {
return off, err
}
return off, nil
}
func packMacWire(mw *macWireFmt, msg []byte) (int, error) {
off, err := packUint16(mw.MACSize, msg, 0)
if err != nil {
return off, err
}
off, err = packStringHex(mw.MAC, msg, off)
if err != nil {
return off, err
}
return off, nil
}
func packTimerWire(tw *timerWireFmt, msg []byte) (int, error) {
off, err := packUint48(tw.TimeSigned, msg, 0)
if err != nil {
return off, err
}
off, err = packUint16(tw.Fudge, msg, off)
if err != nil {
return off, err
}
return off, nil
}

1381
vendor/github.com/miekg/dns/types.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

272
vendor/github.com/miekg/dns/types_generate.go generated vendored Normal file
View File

@ -0,0 +1,272 @@
//+build ignore
// types_generate.go is meant to run with go generate. It will use
// go/{importer,types} to track down all the RR struct types. Then for each type
// it will generate conversion tables (TypeToRR and TypeToString) and banal
// methods (len, Header, copy) based on the struct tags. The generated source is
// written to ztypes.go, and is meant to be checked into git.
package main
import (
"bytes"
"fmt"
"go/format"
"go/importer"
"go/types"
"log"
"os"
"strings"
"text/template"
)
var skipLen = map[string]struct{}{
"NSEC": {},
"NSEC3": {},
"OPT": {},
"CSYNC": {},
}
var packageHdr = `
// Code generated by "go run types_generate.go"; DO NOT EDIT.
package dns
import (
"encoding/base64"
"net"
)
`
var TypeToRR = template.Must(template.New("TypeToRR").Parse(`
// TypeToRR is a map of constructors for each RR type.
var TypeToRR = map[uint16]func() RR{
{{range .}}{{if ne . "RFC3597"}} Type{{.}}: func() RR { return new({{.}}) },
{{end}}{{end}} }
`))
var typeToString = template.Must(template.New("typeToString").Parse(`
// TypeToString is a map of strings for each RR type.
var TypeToString = map[uint16]string{
{{range .}}{{if ne . "NSAPPTR"}} Type{{.}}: "{{.}}",
{{end}}{{end}} TypeNSAPPTR: "NSAP-PTR",
}
`))
var headerFunc = template.Must(template.New("headerFunc").Parse(`
{{range .}} func (rr *{{.}}) Header() *RR_Header { return &rr.Hdr }
{{end}}
`))
// getTypeStruct will take a type and the package scope, and return the
// (innermost) struct if the type is considered a RR type (currently defined as
// those structs beginning with a RR_Header, could be redefined as implementing
// the RR interface). The bool return value indicates if embedded structs were
// resolved.
func getTypeStruct(t types.Type, scope *types.Scope) (*types.Struct, bool) {
st, ok := t.Underlying().(*types.Struct)
if !ok {
return nil, false
}
if st.Field(0).Type() == scope.Lookup("RR_Header").Type() {
return st, false
}
if st.Field(0).Anonymous() {
st, _ := getTypeStruct(st.Field(0).Type(), scope)
return st, true
}
return nil, false
}
func main() {
// Import and type-check the package
pkg, err := importer.Default().Import("github.com/miekg/dns")
fatalIfErr(err)
scope := pkg.Scope()
// Collect constants like TypeX
var numberedTypes []string
for _, name := range scope.Names() {
o := scope.Lookup(name)
if o == nil || !o.Exported() {
continue
}
b, ok := o.Type().(*types.Basic)
if !ok || b.Kind() != types.Uint16 {
continue
}
if !strings.HasPrefix(o.Name(), "Type") {
continue
}
name := strings.TrimPrefix(o.Name(), "Type")
if name == "PrivateRR" {
continue
}
numberedTypes = append(numberedTypes, name)
}
// Collect actual types (*X)
var namedTypes []string
for _, name := range scope.Names() {
o := scope.Lookup(name)
if o == nil || !o.Exported() {
continue
}
if st, _ := getTypeStruct(o.Type(), scope); st == nil {
continue
}
if name == "PrivateRR" {
continue
}
// Check if corresponding TypeX exists
if scope.Lookup("Type"+o.Name()) == nil && o.Name() != "RFC3597" {
log.Fatalf("Constant Type%s does not exist.", o.Name())
}
namedTypes = append(namedTypes, o.Name())
}
b := &bytes.Buffer{}
b.WriteString(packageHdr)
// Generate TypeToRR
fatalIfErr(TypeToRR.Execute(b, namedTypes))
// Generate typeToString
fatalIfErr(typeToString.Execute(b, numberedTypes))
// Generate headerFunc
fatalIfErr(headerFunc.Execute(b, namedTypes))
// Generate len()
fmt.Fprint(b, "// len() functions\n")
for _, name := range namedTypes {
if _, ok := skipLen[name]; ok {
continue
}
o := scope.Lookup(name)
st, isEmbedded := getTypeStruct(o.Type(), scope)
if isEmbedded {
continue
}
fmt.Fprintf(b, "func (rr *%s) len() int {\n", name)
fmt.Fprintf(b, "l := rr.Hdr.len()\n")
for i := 1; i < st.NumFields(); i++ {
o := func(s string) { fmt.Fprintf(b, s, st.Field(i).Name()) }
if _, ok := st.Field(i).Type().(*types.Slice); ok {
switch st.Tag(i) {
case `dns:"-"`:
// ignored
case `dns:"cdomain-name"`, `dns:"domain-name"`, `dns:"txt"`:
o("for _, x := range rr.%s { l += len(x) + 1 }\n")
default:
log.Fatalln(name, st.Field(i).Name(), st.Tag(i))
}
continue
}
switch {
case st.Tag(i) == `dns:"-"`:
// ignored
case st.Tag(i) == `dns:"cdomain-name"`, st.Tag(i) == `dns:"domain-name"`:
o("l += len(rr.%s) + 1\n")
case st.Tag(i) == `dns:"octet"`:
o("l += len(rr.%s)\n")
case strings.HasPrefix(st.Tag(i), `dns:"size-base64`):
fallthrough
case st.Tag(i) == `dns:"base64"`:
o("l += base64.StdEncoding.DecodedLen(len(rr.%s))\n")
case strings.HasPrefix(st.Tag(i), `dns:"size-hex:`): // this has an extra field where the length is stored
o("l += len(rr.%s)/2\n")
case strings.HasPrefix(st.Tag(i), `dns:"size-hex`):
fallthrough
case st.Tag(i) == `dns:"hex"`:
o("l += len(rr.%s)/2 + 1\n")
case st.Tag(i) == `dns:"a"`:
o("l += net.IPv4len // %s\n")
case st.Tag(i) == `dns:"aaaa"`:
o("l += net.IPv6len // %s\n")
case st.Tag(i) == `dns:"txt"`:
o("for _, t := range rr.%s { l += len(t) + 1 }\n")
case st.Tag(i) == `dns:"uint48"`:
o("l += 6 // %s\n")
case st.Tag(i) == "":
switch st.Field(i).Type().(*types.Basic).Kind() {
case types.Uint8:
o("l++ // %s\n")
case types.Uint16:
o("l += 2 // %s\n")
case types.Uint32:
o("l += 4 // %s\n")
case types.Uint64:
o("l += 8 // %s\n")
case types.String:
o("l += len(rr.%s) + 1\n")
default:
log.Fatalln(name, st.Field(i).Name())
}
default:
log.Fatalln(name, st.Field(i).Name(), st.Tag(i))
}
}
fmt.Fprintf(b, "return l }\n")
}
// Generate copy()
fmt.Fprint(b, "// copy() functions\n")
for _, name := range namedTypes {
o := scope.Lookup(name)
st, isEmbedded := getTypeStruct(o.Type(), scope)
if isEmbedded {
continue
}
fmt.Fprintf(b, "func (rr *%s) copy() RR {\n", name)
fields := []string{"rr.Hdr"}
for i := 1; i < st.NumFields(); i++ {
f := st.Field(i).Name()
if sl, ok := st.Field(i).Type().(*types.Slice); ok {
t := sl.Underlying().String()
t = strings.TrimPrefix(t, "[]")
if strings.Contains(t, ".") {
splits := strings.Split(t, ".")
t = splits[len(splits)-1]
}
fmt.Fprintf(b, "%s := make([]%s, len(rr.%s)); copy(%s, rr.%s)\n",
f, t, f, f, f)
fields = append(fields, f)
continue
}
if st.Field(i).Type().String() == "net.IP" {
fields = append(fields, "copyIP(rr."+f+")")
continue
}
fields = append(fields, "rr."+f)
}
fmt.Fprintf(b, "return &%s{%s}\n", name, strings.Join(fields, ","))
fmt.Fprintf(b, "}\n")
}
// gofmt
res, err := format.Source(b.Bytes())
if err != nil {
b.WriteTo(os.Stderr)
log.Fatal(err)
}
// write result
f, err := os.Create("ztypes.go")
fatalIfErr(err)
defer f.Close()
f.Write(res)
}
func fatalIfErr(err error) {
if err != nil {
log.Fatal(err)
}
}

100
vendor/github.com/miekg/dns/udp.go generated vendored Normal file
View File

@ -0,0 +1,100 @@
package dns
import (
"net"
"golang.org/x/net/ipv4"
"golang.org/x/net/ipv6"
)
// This is the required size of the OOB buffer to pass to ReadMsgUDP.
var udpOOBSize = func() int {
// We can't know whether we'll get an IPv4 control message or an
// IPv6 control message ahead of time. To get around this, we size
// the buffer equal to the largest of the two.
oob4 := ipv4.NewControlMessage(ipv4.FlagDst | ipv4.FlagInterface)
oob6 := ipv6.NewControlMessage(ipv6.FlagDst | ipv6.FlagInterface)
if len(oob4) > len(oob6) {
return len(oob4)
}
return len(oob6)
}()
// SessionUDP holds the remote address and the associated
// out-of-band data.
type SessionUDP struct {
raddr *net.UDPAddr
context []byte
}
// RemoteAddr returns the remote network address.
func (s *SessionUDP) RemoteAddr() net.Addr { return s.raddr }
// ReadFromSessionUDP acts just like net.UDPConn.ReadFrom(), but returns a session object instead of a
// net.UDPAddr.
func ReadFromSessionUDP(conn *net.UDPConn, b []byte) (int, *SessionUDP, error) {
oob := make([]byte, udpOOBSize)
n, oobn, _, raddr, err := conn.ReadMsgUDP(b, oob)
if err != nil {
return n, nil, err
}
return n, &SessionUDP{raddr, oob[:oobn]}, err
}
// WriteToSessionUDP acts just like net.UDPConn.WriteTo(), but uses a *SessionUDP instead of a net.Addr.
func WriteToSessionUDP(conn *net.UDPConn, b []byte, session *SessionUDP) (int, error) {
oob := correctSource(session.context)
n, _, err := conn.WriteMsgUDP(b, oob, session.raddr)
return n, err
}
func setUDPSocketOptions(conn *net.UDPConn) error {
// Try setting the flags for both families and ignore the errors unless they
// both error.
err6 := ipv6.NewPacketConn(conn).SetControlMessage(ipv6.FlagDst|ipv6.FlagInterface, true)
err4 := ipv4.NewPacketConn(conn).SetControlMessage(ipv4.FlagDst|ipv4.FlagInterface, true)
if err6 != nil && err4 != nil {
return err4
}
return nil
}
// parseDstFromOOB takes oob data and returns the destination IP.
func parseDstFromOOB(oob []byte) net.IP {
// Start with IPv6 and then fallback to IPv4
// TODO(fastest963): Figure out a way to prefer one or the other. Looking at
// the lvl of the header for a 0 or 41 isn't cross-platform.
cm6 := new(ipv6.ControlMessage)
if cm6.Parse(oob) == nil && cm6.Dst != nil {
return cm6.Dst
}
cm4 := new(ipv4.ControlMessage)
if cm4.Parse(oob) == nil && cm4.Dst != nil {
return cm4.Dst
}
return nil
}
// correctSource takes oob data and returns new oob data with the Src equal to the Dst
func correctSource(oob []byte) []byte {
dst := parseDstFromOOB(oob)
if dst == nil {
return nil
}
// If the dst is definitely an IPv6, then use ipv6's ControlMessage to
// respond otherwise use ipv4's because ipv6's marshal ignores ipv4
// addresses.
if dst.To4() == nil {
cm := new(ipv6.ControlMessage)
cm.Src = dst
oob = cm.Marshal()
} else {
cm := new(ipv4.ControlMessage)
cm.Src = dst
oob = cm.Marshal()
}
return oob
}

106
vendor/github.com/miekg/dns/update.go generated vendored Normal file
View File

@ -0,0 +1,106 @@
package dns
// NameUsed sets the RRs in the prereq section to
// "Name is in use" RRs. RFC 2136 section 2.4.4.
func (u *Msg) NameUsed(rr []RR) {
if u.Answer == nil {
u.Answer = make([]RR, 0, len(rr))
}
for _, r := range rr {
u.Answer = append(u.Answer, &ANY{Hdr: RR_Header{Name: r.Header().Name, Ttl: 0, Rrtype: TypeANY, Class: ClassANY}})
}
}
// NameNotUsed sets the RRs in the prereq section to
// "Name is in not use" RRs. RFC 2136 section 2.4.5.
func (u *Msg) NameNotUsed(rr []RR) {
if u.Answer == nil {
u.Answer = make([]RR, 0, len(rr))
}
for _, r := range rr {
u.Answer = append(u.Answer, &ANY{Hdr: RR_Header{Name: r.Header().Name, Ttl: 0, Rrtype: TypeANY, Class: ClassNONE}})
}
}
// Used sets the RRs in the prereq section to
// "RRset exists (value dependent -- with rdata)" RRs. RFC 2136 section 2.4.2.
func (u *Msg) Used(rr []RR) {
if len(u.Question) == 0 {
panic("dns: empty question section")
}
if u.Answer == nil {
u.Answer = make([]RR, 0, len(rr))
}
for _, r := range rr {
r.Header().Class = u.Question[0].Qclass
u.Answer = append(u.Answer, r)
}
}
// RRsetUsed sets the RRs in the prereq section to
// "RRset exists (value independent -- no rdata)" RRs. RFC 2136 section 2.4.1.
func (u *Msg) RRsetUsed(rr []RR) {
if u.Answer == nil {
u.Answer = make([]RR, 0, len(rr))
}
for _, r := range rr {
u.Answer = append(u.Answer, &ANY{Hdr: RR_Header{Name: r.Header().Name, Ttl: 0, Rrtype: r.Header().Rrtype, Class: ClassANY}})
}
}
// RRsetNotUsed sets the RRs in the prereq section to
// "RRset does not exist" RRs. RFC 2136 section 2.4.3.
func (u *Msg) RRsetNotUsed(rr []RR) {
if u.Answer == nil {
u.Answer = make([]RR, 0, len(rr))
}
for _, r := range rr {
u.Answer = append(u.Answer, &ANY{Hdr: RR_Header{Name: r.Header().Name, Ttl: 0, Rrtype: r.Header().Rrtype, Class: ClassNONE}})
}
}
// Insert creates a dynamic update packet that adds an complete RRset, see RFC 2136 section 2.5.1.
func (u *Msg) Insert(rr []RR) {
if len(u.Question) == 0 {
panic("dns: empty question section")
}
if u.Ns == nil {
u.Ns = make([]RR, 0, len(rr))
}
for _, r := range rr {
r.Header().Class = u.Question[0].Qclass
u.Ns = append(u.Ns, r)
}
}
// RemoveRRset creates a dynamic update packet that deletes an RRset, see RFC 2136 section 2.5.2.
func (u *Msg) RemoveRRset(rr []RR) {
if u.Ns == nil {
u.Ns = make([]RR, 0, len(rr))
}
for _, r := range rr {
u.Ns = append(u.Ns, &ANY{Hdr: RR_Header{Name: r.Header().Name, Ttl: 0, Rrtype: r.Header().Rrtype, Class: ClassANY}})
}
}
// RemoveName creates a dynamic update packet that deletes all RRsets of a name, see RFC 2136 section 2.5.3
func (u *Msg) RemoveName(rr []RR) {
if u.Ns == nil {
u.Ns = make([]RR, 0, len(rr))
}
for _, r := range rr {
u.Ns = append(u.Ns, &ANY{Hdr: RR_Header{Name: r.Header().Name, Ttl: 0, Rrtype: TypeANY, Class: ClassANY}})
}
}
// Remove creates a dynamic update packet deletes RR from a RRSset, see RFC 2136 section 2.5.4
func (u *Msg) Remove(rr []RR) {
if u.Ns == nil {
u.Ns = make([]RR, 0, len(rr))
}
for _, r := range rr {
r.Header().Class = ClassNONE
r.Header().Ttl = 0
u.Ns = append(u.Ns, r)
}
}

15
vendor/github.com/miekg/dns/version.go generated vendored Normal file
View File

@ -0,0 +1,15 @@
package dns
import "fmt"
// Version is current version of this library.
var Version = V{1, 0, 8}
// V holds the version of this library.
type V struct {
Major, Minor, Patch int
}
func (v V) String() string {
return fmt.Sprintf("%d.%d.%d", v.Major, v.Minor, v.Patch)
}

260
vendor/github.com/miekg/dns/xfr.go generated vendored Normal file
View File

@ -0,0 +1,260 @@
package dns
import (
"fmt"
"time"
)
// Envelope is used when doing a zone transfer with a remote server.
type Envelope struct {
RR []RR // The set of RRs in the answer section of the xfr reply message.
Error error // If something went wrong, this contains the error.
}
// A Transfer defines parameters that are used during a zone transfer.
type Transfer struct {
*Conn
DialTimeout time.Duration // net.DialTimeout, defaults to 2 seconds
ReadTimeout time.Duration // net.Conn.SetReadTimeout value for connections, defaults to 2 seconds
WriteTimeout time.Duration // net.Conn.SetWriteTimeout value for connections, defaults to 2 seconds
TsigSecret map[string]string // Secret(s) for Tsig map[<zonename>]<base64 secret>, zonename must be in canonical form (lowercase, fqdn, see RFC 4034 Section 6.2)
tsigTimersOnly bool
}
// Think we need to away to stop the transfer
// In performs an incoming transfer with the server in a.
// If you would like to set the source IP, or some other attribute
// of a Dialer for a Transfer, you can do so by specifying the attributes
// in the Transfer.Conn:
//
// d := net.Dialer{LocalAddr: transfer_source}
// con, err := d.Dial("tcp", master)
// dnscon := &dns.Conn{Conn:con}
// transfer = &dns.Transfer{Conn: dnscon}
// channel, err := transfer.In(message, master)
//
func (t *Transfer) In(q *Msg, a string) (env chan *Envelope, err error) {
timeout := dnsTimeout
if t.DialTimeout != 0 {
timeout = t.DialTimeout
}
if t.Conn == nil {
t.Conn, err = DialTimeout("tcp", a, timeout)
if err != nil {
return nil, err
}
}
if err := t.WriteMsg(q); err != nil {
return nil, err
}
env = make(chan *Envelope)
go func() {
if q.Question[0].Qtype == TypeAXFR {
go t.inAxfr(q, env)
return
}
if q.Question[0].Qtype == TypeIXFR {
go t.inIxfr(q, env)
return
}
}()
return env, nil
}
func (t *Transfer) inAxfr(q *Msg, c chan *Envelope) {
first := true
defer t.Close()
defer close(c)
timeout := dnsTimeout
if t.ReadTimeout != 0 {
timeout = t.ReadTimeout
}
for {
t.Conn.SetReadDeadline(time.Now().Add(timeout))
in, err := t.ReadMsg()
if err != nil {
c <- &Envelope{nil, err}
return
}
if q.Id != in.Id {
c <- &Envelope{in.Answer, ErrId}
return
}
if first {
if in.Rcode != RcodeSuccess {
c <- &Envelope{in.Answer, &Error{err: fmt.Sprintf(errXFR, in.Rcode)}}
return
}
if !isSOAFirst(in) {
c <- &Envelope{in.Answer, ErrSoa}
return
}
first = !first
// only one answer that is SOA, receive more
if len(in.Answer) == 1 {
t.tsigTimersOnly = true
c <- &Envelope{in.Answer, nil}
continue
}
}
if !first {
t.tsigTimersOnly = true // Subsequent envelopes use this.
if isSOALast(in) {
c <- &Envelope{in.Answer, nil}
return
}
c <- &Envelope{in.Answer, nil}
}
}
}
func (t *Transfer) inIxfr(q *Msg, c chan *Envelope) {
serial := uint32(0) // The first serial seen is the current server serial
axfr := true
n := 0
qser := q.Ns[0].(*SOA).Serial
defer t.Close()
defer close(c)
timeout := dnsTimeout
if t.ReadTimeout != 0 {
timeout = t.ReadTimeout
}
for {
t.SetReadDeadline(time.Now().Add(timeout))
in, err := t.ReadMsg()
if err != nil {
c <- &Envelope{nil, err}
return
}
if q.Id != in.Id {
c <- &Envelope{in.Answer, ErrId}
return
}
if in.Rcode != RcodeSuccess {
c <- &Envelope{in.Answer, &Error{err: fmt.Sprintf(errXFR, in.Rcode)}}
return
}
if n == 0 {
// Check if the returned answer is ok
if !isSOAFirst(in) {
c <- &Envelope{in.Answer, ErrSoa}
return
}
// This serial is important
serial = in.Answer[0].(*SOA).Serial
// Check if there are no changes in zone
if qser >= serial {
c <- &Envelope{in.Answer, nil}
return
}
}
// Now we need to check each message for SOA records, to see what we need to do
t.tsigTimersOnly = true
for _, rr := range in.Answer {
if v, ok := rr.(*SOA); ok {
if v.Serial == serial {
n++
// quit if it's a full axfr or the the servers' SOA is repeated the third time
if axfr && n == 2 || n == 3 {
c <- &Envelope{in.Answer, nil}
return
}
} else if axfr {
// it's an ixfr
axfr = false
}
}
}
c <- &Envelope{in.Answer, nil}
}
}
// Out performs an outgoing transfer with the client connecting in w.
// Basic use pattern:
//
// ch := make(chan *dns.Envelope)
// tr := new(dns.Transfer)
// go tr.Out(w, r, ch)
// ch <- &dns.Envelope{RR: []dns.RR{soa, rr1, rr2, rr3, soa}}
// close(ch)
// w.Hijack()
// // w.Close() // Client closes connection
//
// The server is responsible for sending the correct sequence of RRs through the
// channel ch.
func (t *Transfer) Out(w ResponseWriter, q *Msg, ch chan *Envelope) error {
for x := range ch {
r := new(Msg)
// Compress?
r.SetReply(q)
r.Authoritative = true
// assume it fits TODO(miek): fix
r.Answer = append(r.Answer, x.RR...)
if err := w.WriteMsg(r); err != nil {
return err
}
}
w.TsigTimersOnly(true)
return nil
}
// ReadMsg reads a message from the transfer connection t.
func (t *Transfer) ReadMsg() (*Msg, error) {
m := new(Msg)
p := make([]byte, MaxMsgSize)
n, err := t.Read(p)
if err != nil && n == 0 {
return nil, err
}
p = p[:n]
if err := m.Unpack(p); err != nil {
return nil, err
}
if ts := m.IsTsig(); ts != nil && t.TsigSecret != nil {
if _, ok := t.TsigSecret[ts.Hdr.Name]; !ok {
return m, ErrSecret
}
// Need to work on the original message p, as that was used to calculate the tsig.
err = TsigVerify(p, t.TsigSecret[ts.Hdr.Name], t.tsigRequestMAC, t.tsigTimersOnly)
t.tsigRequestMAC = ts.MAC
}
return m, err
}
// WriteMsg writes a message through the transfer connection t.
func (t *Transfer) WriteMsg(m *Msg) (err error) {
var out []byte
if ts := m.IsTsig(); ts != nil && t.TsigSecret != nil {
if _, ok := t.TsigSecret[ts.Hdr.Name]; !ok {
return ErrSecret
}
out, t.tsigRequestMAC, err = TsigGenerate(m, t.TsigSecret[ts.Hdr.Name], t.tsigRequestMAC, t.tsigTimersOnly)
} else {
out, err = m.Pack()
}
if err != nil {
return err
}
if _, err = t.Write(out); err != nil {
return err
}
return nil
}
func isSOAFirst(in *Msg) bool {
if len(in.Answer) > 0 {
return in.Answer[0].Header().Rrtype == TypeSOA
}
return false
}
func isSOALast(in *Msg) bool {
if len(in.Answer) > 0 {
return in.Answer[len(in.Answer)-1].Header().Rrtype == TypeSOA
}
return false
}
const errXFR = "bad xfr rcode: %d"

152
vendor/github.com/miekg/dns/zcompress.go generated vendored Normal file
View File

@ -0,0 +1,152 @@
// Code generated by "go run compress_generate.go"; DO NOT EDIT.
package dns
func compressionLenHelperType(c map[string]int, r RR, initLen int) int {
currentLen := initLen
switch x := r.(type) {
case *AFSDB:
currentLen -= len(x.Hostname) + 1
currentLen += compressionLenHelper(c, x.Hostname, currentLen)
case *CNAME:
currentLen -= len(x.Target) + 1
currentLen += compressionLenHelper(c, x.Target, currentLen)
case *DNAME:
currentLen -= len(x.Target) + 1
currentLen += compressionLenHelper(c, x.Target, currentLen)
case *HIP:
for i := range x.RendezvousServers {
currentLen -= len(x.RendezvousServers[i]) + 1
}
for i := range x.RendezvousServers {
currentLen += compressionLenHelper(c, x.RendezvousServers[i], currentLen)
}
case *KX:
currentLen -= len(x.Exchanger) + 1
currentLen += compressionLenHelper(c, x.Exchanger, currentLen)
case *LP:
currentLen -= len(x.Fqdn) + 1
currentLen += compressionLenHelper(c, x.Fqdn, currentLen)
case *MB:
currentLen -= len(x.Mb) + 1
currentLen += compressionLenHelper(c, x.Mb, currentLen)
case *MD:
currentLen -= len(x.Md) + 1
currentLen += compressionLenHelper(c, x.Md, currentLen)
case *MF:
currentLen -= len(x.Mf) + 1
currentLen += compressionLenHelper(c, x.Mf, currentLen)
case *MG:
currentLen -= len(x.Mg) + 1
currentLen += compressionLenHelper(c, x.Mg, currentLen)
case *MINFO:
currentLen -= len(x.Rmail) + 1
currentLen += compressionLenHelper(c, x.Rmail, currentLen)
currentLen -= len(x.Email) + 1
currentLen += compressionLenHelper(c, x.Email, currentLen)
case *MR:
currentLen -= len(x.Mr) + 1
currentLen += compressionLenHelper(c, x.Mr, currentLen)
case *MX:
currentLen -= len(x.Mx) + 1
currentLen += compressionLenHelper(c, x.Mx, currentLen)
case *NAPTR:
currentLen -= len(x.Replacement) + 1
currentLen += compressionLenHelper(c, x.Replacement, currentLen)
case *NS:
currentLen -= len(x.Ns) + 1
currentLen += compressionLenHelper(c, x.Ns, currentLen)
case *NSAPPTR:
currentLen -= len(x.Ptr) + 1
currentLen += compressionLenHelper(c, x.Ptr, currentLen)
case *NSEC:
currentLen -= len(x.NextDomain) + 1
currentLen += compressionLenHelper(c, x.NextDomain, currentLen)
case *PTR:
currentLen -= len(x.Ptr) + 1
currentLen += compressionLenHelper(c, x.Ptr, currentLen)
case *PX:
currentLen -= len(x.Map822) + 1
currentLen += compressionLenHelper(c, x.Map822, currentLen)
currentLen -= len(x.Mapx400) + 1
currentLen += compressionLenHelper(c, x.Mapx400, currentLen)
case *RP:
currentLen -= len(x.Mbox) + 1
currentLen += compressionLenHelper(c, x.Mbox, currentLen)
currentLen -= len(x.Txt) + 1
currentLen += compressionLenHelper(c, x.Txt, currentLen)
case *RRSIG:
currentLen -= len(x.SignerName) + 1
currentLen += compressionLenHelper(c, x.SignerName, currentLen)
case *RT:
currentLen -= len(x.Host) + 1
currentLen += compressionLenHelper(c, x.Host, currentLen)
case *SIG:
currentLen -= len(x.SignerName) + 1
currentLen += compressionLenHelper(c, x.SignerName, currentLen)
case *SOA:
currentLen -= len(x.Ns) + 1
currentLen += compressionLenHelper(c, x.Ns, currentLen)
currentLen -= len(x.Mbox) + 1
currentLen += compressionLenHelper(c, x.Mbox, currentLen)
case *SRV:
currentLen -= len(x.Target) + 1
currentLen += compressionLenHelper(c, x.Target, currentLen)
case *TALINK:
currentLen -= len(x.PreviousName) + 1
currentLen += compressionLenHelper(c, x.PreviousName, currentLen)
currentLen -= len(x.NextName) + 1
currentLen += compressionLenHelper(c, x.NextName, currentLen)
case *TKEY:
currentLen -= len(x.Algorithm) + 1
currentLen += compressionLenHelper(c, x.Algorithm, currentLen)
case *TSIG:
currentLen -= len(x.Algorithm) + 1
currentLen += compressionLenHelper(c, x.Algorithm, currentLen)
}
return currentLen - initLen
}
func compressionLenSearchType(c map[string]int, r RR) (int, bool, int) {
switch x := r.(type) {
case *CNAME:
k1, ok1, sz1 := compressionLenSearch(c, x.Target)
return k1, ok1, sz1
case *MB:
k1, ok1, sz1 := compressionLenSearch(c, x.Mb)
return k1, ok1, sz1
case *MD:
k1, ok1, sz1 := compressionLenSearch(c, x.Md)
return k1, ok1, sz1
case *MF:
k1, ok1, sz1 := compressionLenSearch(c, x.Mf)
return k1, ok1, sz1
case *MG:
k1, ok1, sz1 := compressionLenSearch(c, x.Mg)
return k1, ok1, sz1
case *MINFO:
k1, ok1, sz1 := compressionLenSearch(c, x.Rmail)
k2, ok2, sz2 := compressionLenSearch(c, x.Email)
return k1 + k2, ok1 && ok2, sz1 + sz2
case *MR:
k1, ok1, sz1 := compressionLenSearch(c, x.Mr)
return k1, ok1, sz1
case *MX:
k1, ok1, sz1 := compressionLenSearch(c, x.Mx)
return k1, ok1, sz1
case *NS:
k1, ok1, sz1 := compressionLenSearch(c, x.Ns)
return k1, ok1, sz1
case *PTR:
k1, ok1, sz1 := compressionLenSearch(c, x.Ptr)
return k1, ok1, sz1
case *RT:
k1, ok1, sz1 := compressionLenSearch(c, x.Host)
return k1, ok1, sz1
case *SOA:
k1, ok1, sz1 := compressionLenSearch(c, x.Ns)
k2, ok2, sz2 := compressionLenSearch(c, x.Mbox)
return k1 + k2, ok1 && ok2, sz1 + sz2
}
return 0, false, 0
}

943
vendor/github.com/miekg/dns/zduplicate.go generated vendored Normal file
View File

@ -0,0 +1,943 @@
// Code generated by "go run duplicate_generate.go"; DO NOT EDIT.
package dns
// isDuplicateRdata calls the rdata specific functions
func isDuplicateRdata(r1, r2 RR) bool {
switch r1.Header().Rrtype {
case TypeA:
return isDuplicateA(r1.(*A), r2.(*A))
case TypeAAAA:
return isDuplicateAAAA(r1.(*AAAA), r2.(*AAAA))
case TypeAFSDB:
return isDuplicateAFSDB(r1.(*AFSDB), r2.(*AFSDB))
case TypeAVC:
return isDuplicateAVC(r1.(*AVC), r2.(*AVC))
case TypeCAA:
return isDuplicateCAA(r1.(*CAA), r2.(*CAA))
case TypeCERT:
return isDuplicateCERT(r1.(*CERT), r2.(*CERT))
case TypeCNAME:
return isDuplicateCNAME(r1.(*CNAME), r2.(*CNAME))
case TypeCSYNC:
return isDuplicateCSYNC(r1.(*CSYNC), r2.(*CSYNC))
case TypeDHCID:
return isDuplicateDHCID(r1.(*DHCID), r2.(*DHCID))
case TypeDNAME:
return isDuplicateDNAME(r1.(*DNAME), r2.(*DNAME))
case TypeDNSKEY:
return isDuplicateDNSKEY(r1.(*DNSKEY), r2.(*DNSKEY))
case TypeDS:
return isDuplicateDS(r1.(*DS), r2.(*DS))
case TypeEID:
return isDuplicateEID(r1.(*EID), r2.(*EID))
case TypeEUI48:
return isDuplicateEUI48(r1.(*EUI48), r2.(*EUI48))
case TypeEUI64:
return isDuplicateEUI64(r1.(*EUI64), r2.(*EUI64))
case TypeGID:
return isDuplicateGID(r1.(*GID), r2.(*GID))
case TypeGPOS:
return isDuplicateGPOS(r1.(*GPOS), r2.(*GPOS))
case TypeHINFO:
return isDuplicateHINFO(r1.(*HINFO), r2.(*HINFO))
case TypeHIP:
return isDuplicateHIP(r1.(*HIP), r2.(*HIP))
case TypeKX:
return isDuplicateKX(r1.(*KX), r2.(*KX))
case TypeL32:
return isDuplicateL32(r1.(*L32), r2.(*L32))
case TypeL64:
return isDuplicateL64(r1.(*L64), r2.(*L64))
case TypeLOC:
return isDuplicateLOC(r1.(*LOC), r2.(*LOC))
case TypeLP:
return isDuplicateLP(r1.(*LP), r2.(*LP))
case TypeMB:
return isDuplicateMB(r1.(*MB), r2.(*MB))
case TypeMD:
return isDuplicateMD(r1.(*MD), r2.(*MD))
case TypeMF:
return isDuplicateMF(r1.(*MF), r2.(*MF))
case TypeMG:
return isDuplicateMG(r1.(*MG), r2.(*MG))
case TypeMINFO:
return isDuplicateMINFO(r1.(*MINFO), r2.(*MINFO))
case TypeMR:
return isDuplicateMR(r1.(*MR), r2.(*MR))
case TypeMX:
return isDuplicateMX(r1.(*MX), r2.(*MX))
case TypeNAPTR:
return isDuplicateNAPTR(r1.(*NAPTR), r2.(*NAPTR))
case TypeNID:
return isDuplicateNID(r1.(*NID), r2.(*NID))
case TypeNIMLOC:
return isDuplicateNIMLOC(r1.(*NIMLOC), r2.(*NIMLOC))
case TypeNINFO:
return isDuplicateNINFO(r1.(*NINFO), r2.(*NINFO))
case TypeNS:
return isDuplicateNS(r1.(*NS), r2.(*NS))
case TypeNSAPPTR:
return isDuplicateNSAPPTR(r1.(*NSAPPTR), r2.(*NSAPPTR))
case TypeNSEC:
return isDuplicateNSEC(r1.(*NSEC), r2.(*NSEC))
case TypeNSEC3:
return isDuplicateNSEC3(r1.(*NSEC3), r2.(*NSEC3))
case TypeNSEC3PARAM:
return isDuplicateNSEC3PARAM(r1.(*NSEC3PARAM), r2.(*NSEC3PARAM))
case TypeOPENPGPKEY:
return isDuplicateOPENPGPKEY(r1.(*OPENPGPKEY), r2.(*OPENPGPKEY))
case TypePTR:
return isDuplicatePTR(r1.(*PTR), r2.(*PTR))
case TypePX:
return isDuplicatePX(r1.(*PX), r2.(*PX))
case TypeRKEY:
return isDuplicateRKEY(r1.(*RKEY), r2.(*RKEY))
case TypeRP:
return isDuplicateRP(r1.(*RP), r2.(*RP))
case TypeRRSIG:
return isDuplicateRRSIG(r1.(*RRSIG), r2.(*RRSIG))
case TypeRT:
return isDuplicateRT(r1.(*RT), r2.(*RT))
case TypeSMIMEA:
return isDuplicateSMIMEA(r1.(*SMIMEA), r2.(*SMIMEA))
case TypeSOA:
return isDuplicateSOA(r1.(*SOA), r2.(*SOA))
case TypeSPF:
return isDuplicateSPF(r1.(*SPF), r2.(*SPF))
case TypeSRV:
return isDuplicateSRV(r1.(*SRV), r2.(*SRV))
case TypeSSHFP:
return isDuplicateSSHFP(r1.(*SSHFP), r2.(*SSHFP))
case TypeTA:
return isDuplicateTA(r1.(*TA), r2.(*TA))
case TypeTALINK:
return isDuplicateTALINK(r1.(*TALINK), r2.(*TALINK))
case TypeTKEY:
return isDuplicateTKEY(r1.(*TKEY), r2.(*TKEY))
case TypeTLSA:
return isDuplicateTLSA(r1.(*TLSA), r2.(*TLSA))
case TypeTSIG:
return isDuplicateTSIG(r1.(*TSIG), r2.(*TSIG))
case TypeTXT:
return isDuplicateTXT(r1.(*TXT), r2.(*TXT))
case TypeUID:
return isDuplicateUID(r1.(*UID), r2.(*UID))
case TypeUINFO:
return isDuplicateUINFO(r1.(*UINFO), r2.(*UINFO))
case TypeURI:
return isDuplicateURI(r1.(*URI), r2.(*URI))
case TypeX25:
return isDuplicateX25(r1.(*X25), r2.(*X25))
}
return false
}
// isDuplicate() functions
func isDuplicateA(r1, r2 *A) bool {
if len(r1.A) != len(r2.A) {
return false
}
for i := 0; i < len(r1.A); i++ {
if r1.A[i] != r2.A[i] {
return false
}
}
return true
}
func isDuplicateAAAA(r1, r2 *AAAA) bool {
if len(r1.AAAA) != len(r2.AAAA) {
return false
}
for i := 0; i < len(r1.AAAA); i++ {
if r1.AAAA[i] != r2.AAAA[i] {
return false
}
}
return true
}
func isDuplicateAFSDB(r1, r2 *AFSDB) bool {
if r1.Subtype != r2.Subtype {
return false
}
if !isDulicateName(r1.Hostname, r2.Hostname) {
return false
}
return true
}
func isDuplicateAVC(r1, r2 *AVC) bool {
if len(r1.Txt) != len(r2.Txt) {
return false
}
for i := 0; i < len(r1.Txt); i++ {
if r1.Txt[i] != r2.Txt[i] {
return false
}
}
return true
}
func isDuplicateCAA(r1, r2 *CAA) bool {
if r1.Flag != r2.Flag {
return false
}
if r1.Tag != r2.Tag {
return false
}
if r1.Value != r2.Value {
return false
}
return true
}
func isDuplicateCERT(r1, r2 *CERT) bool {
if r1.Type != r2.Type {
return false
}
if r1.KeyTag != r2.KeyTag {
return false
}
if r1.Algorithm != r2.Algorithm {
return false
}
if r1.Certificate != r2.Certificate {
return false
}
return true
}
func isDuplicateCNAME(r1, r2 *CNAME) bool {
if !isDulicateName(r1.Target, r2.Target) {
return false
}
return true
}
func isDuplicateCSYNC(r1, r2 *CSYNC) bool {
if r1.Serial != r2.Serial {
return false
}
if r1.Flags != r2.Flags {
return false
}
if len(r1.TypeBitMap) != len(r2.TypeBitMap) {
return false
}
for i := 0; i < len(r1.TypeBitMap); i++ {
if r1.TypeBitMap[i] != r2.TypeBitMap[i] {
return false
}
}
return true
}
func isDuplicateDHCID(r1, r2 *DHCID) bool {
if r1.Digest != r2.Digest {
return false
}
return true
}
func isDuplicateDNAME(r1, r2 *DNAME) bool {
if !isDulicateName(r1.Target, r2.Target) {
return false
}
return true
}
func isDuplicateDNSKEY(r1, r2 *DNSKEY) bool {
if r1.Flags != r2.Flags {
return false
}
if r1.Protocol != r2.Protocol {
return false
}
if r1.Algorithm != r2.Algorithm {
return false
}
if r1.PublicKey != r2.PublicKey {
return false
}
return true
}
func isDuplicateDS(r1, r2 *DS) bool {
if r1.KeyTag != r2.KeyTag {
return false
}
if r1.Algorithm != r2.Algorithm {
return false
}
if r1.DigestType != r2.DigestType {
return false
}
if r1.Digest != r2.Digest {
return false
}
return true
}
func isDuplicateEID(r1, r2 *EID) bool {
if r1.Endpoint != r2.Endpoint {
return false
}
return true
}
func isDuplicateEUI48(r1, r2 *EUI48) bool {
if r1.Address != r2.Address {
return false
}
return true
}
func isDuplicateEUI64(r1, r2 *EUI64) bool {
if r1.Address != r2.Address {
return false
}
return true
}
func isDuplicateGID(r1, r2 *GID) bool {
if r1.Gid != r2.Gid {
return false
}
return true
}
func isDuplicateGPOS(r1, r2 *GPOS) bool {
if r1.Longitude != r2.Longitude {
return false
}
if r1.Latitude != r2.Latitude {
return false
}
if r1.Altitude != r2.Altitude {
return false
}
return true
}
func isDuplicateHINFO(r1, r2 *HINFO) bool {
if r1.Cpu != r2.Cpu {
return false
}
if r1.Os != r2.Os {
return false
}
return true
}
func isDuplicateHIP(r1, r2 *HIP) bool {
if r1.HitLength != r2.HitLength {
return false
}
if r1.PublicKeyAlgorithm != r2.PublicKeyAlgorithm {
return false
}
if r1.PublicKeyLength != r2.PublicKeyLength {
return false
}
if r1.Hit != r2.Hit {
return false
}
if r1.PublicKey != r2.PublicKey {
return false
}
if len(r1.RendezvousServers) != len(r2.RendezvousServers) {
return false
}
for i := 0; i < len(r1.RendezvousServers); i++ {
if !isDulicateName(r1.RendezvousServers[i], r2.RendezvousServers[i]) {
return false
}
}
return true
}
func isDuplicateKX(r1, r2 *KX) bool {
if r1.Preference != r2.Preference {
return false
}
if !isDulicateName(r1.Exchanger, r2.Exchanger) {
return false
}
return true
}
func isDuplicateL32(r1, r2 *L32) bool {
if r1.Preference != r2.Preference {
return false
}
if len(r1.Locator32) != len(r2.Locator32) {
return false
}
for i := 0; i < len(r1.Locator32); i++ {
if r1.Locator32[i] != r2.Locator32[i] {
return false
}
}
return true
}
func isDuplicateL64(r1, r2 *L64) bool {
if r1.Preference != r2.Preference {
return false
}
if r1.Locator64 != r2.Locator64 {
return false
}
return true
}
func isDuplicateLOC(r1, r2 *LOC) bool {
if r1.Version != r2.Version {
return false
}
if r1.Size != r2.Size {
return false
}
if r1.HorizPre != r2.HorizPre {
return false
}
if r1.VertPre != r2.VertPre {
return false
}
if r1.Latitude != r2.Latitude {
return false
}
if r1.Longitude != r2.Longitude {
return false
}
if r1.Altitude != r2.Altitude {
return false
}
return true
}
func isDuplicateLP(r1, r2 *LP) bool {
if r1.Preference != r2.Preference {
return false
}
if !isDulicateName(r1.Fqdn, r2.Fqdn) {
return false
}
return true
}
func isDuplicateMB(r1, r2 *MB) bool {
if !isDulicateName(r1.Mb, r2.Mb) {
return false
}
return true
}
func isDuplicateMD(r1, r2 *MD) bool {
if !isDulicateName(r1.Md, r2.Md) {
return false
}
return true
}
func isDuplicateMF(r1, r2 *MF) bool {
if !isDulicateName(r1.Mf, r2.Mf) {
return false
}
return true
}
func isDuplicateMG(r1, r2 *MG) bool {
if !isDulicateName(r1.Mg, r2.Mg) {
return false
}
return true
}
func isDuplicateMINFO(r1, r2 *MINFO) bool {
if !isDulicateName(r1.Rmail, r2.Rmail) {
return false
}
if !isDulicateName(r1.Email, r2.Email) {
return false
}
return true
}
func isDuplicateMR(r1, r2 *MR) bool {
if !isDulicateName(r1.Mr, r2.Mr) {
return false
}
return true
}
func isDuplicateMX(r1, r2 *MX) bool {
if r1.Preference != r2.Preference {
return false
}
if !isDulicateName(r1.Mx, r2.Mx) {
return false
}
return true
}
func isDuplicateNAPTR(r1, r2 *NAPTR) bool {
if r1.Order != r2.Order {
return false
}
if r1.Preference != r2.Preference {
return false
}
if r1.Flags != r2.Flags {
return false
}
if r1.Service != r2.Service {
return false
}
if r1.Regexp != r2.Regexp {
return false
}
if !isDulicateName(r1.Replacement, r2.Replacement) {
return false
}
return true
}
func isDuplicateNID(r1, r2 *NID) bool {
if r1.Preference != r2.Preference {
return false
}
if r1.NodeID != r2.NodeID {
return false
}
return true
}
func isDuplicateNIMLOC(r1, r2 *NIMLOC) bool {
if r1.Locator != r2.Locator {
return false
}
return true
}
func isDuplicateNINFO(r1, r2 *NINFO) bool {
if len(r1.ZSData) != len(r2.ZSData) {
return false
}
for i := 0; i < len(r1.ZSData); i++ {
if r1.ZSData[i] != r2.ZSData[i] {
return false
}
}
return true
}
func isDuplicateNS(r1, r2 *NS) bool {
if !isDulicateName(r1.Ns, r2.Ns) {
return false
}
return true
}
func isDuplicateNSAPPTR(r1, r2 *NSAPPTR) bool {
if !isDulicateName(r1.Ptr, r2.Ptr) {
return false
}
return true
}
func isDuplicateNSEC(r1, r2 *NSEC) bool {
if !isDulicateName(r1.NextDomain, r2.NextDomain) {
return false
}
if len(r1.TypeBitMap) != len(r2.TypeBitMap) {
return false
}
for i := 0; i < len(r1.TypeBitMap); i++ {
if r1.TypeBitMap[i] != r2.TypeBitMap[i] {
return false
}
}
return true
}
func isDuplicateNSEC3(r1, r2 *NSEC3) bool {
if r1.Hash != r2.Hash {
return false
}
if r1.Flags != r2.Flags {
return false
}
if r1.Iterations != r2.Iterations {
return false
}
if r1.SaltLength != r2.SaltLength {
return false
}
if r1.Salt != r2.Salt {
return false
}
if r1.HashLength != r2.HashLength {
return false
}
if r1.NextDomain != r2.NextDomain {
return false
}
if len(r1.TypeBitMap) != len(r2.TypeBitMap) {
return false
}
for i := 0; i < len(r1.TypeBitMap); i++ {
if r1.TypeBitMap[i] != r2.TypeBitMap[i] {
return false
}
}
return true
}
func isDuplicateNSEC3PARAM(r1, r2 *NSEC3PARAM) bool {
if r1.Hash != r2.Hash {
return false
}
if r1.Flags != r2.Flags {
return false
}
if r1.Iterations != r2.Iterations {
return false
}
if r1.SaltLength != r2.SaltLength {
return false
}
if r1.Salt != r2.Salt {
return false
}
return true
}
func isDuplicateOPENPGPKEY(r1, r2 *OPENPGPKEY) bool {
if r1.PublicKey != r2.PublicKey {
return false
}
return true
}
func isDuplicatePTR(r1, r2 *PTR) bool {
if !isDulicateName(r1.Ptr, r2.Ptr) {
return false
}
return true
}
func isDuplicatePX(r1, r2 *PX) bool {
if r1.Preference != r2.Preference {
return false
}
if !isDulicateName(r1.Map822, r2.Map822) {
return false
}
if !isDulicateName(r1.Mapx400, r2.Mapx400) {
return false
}
return true
}
func isDuplicateRKEY(r1, r2 *RKEY) bool {
if r1.Flags != r2.Flags {
return false
}
if r1.Protocol != r2.Protocol {
return false
}
if r1.Algorithm != r2.Algorithm {
return false
}
if r1.PublicKey != r2.PublicKey {
return false
}
return true
}
func isDuplicateRP(r1, r2 *RP) bool {
if !isDulicateName(r1.Mbox, r2.Mbox) {
return false
}
if !isDulicateName(r1.Txt, r2.Txt) {
return false
}
return true
}
func isDuplicateRRSIG(r1, r2 *RRSIG) bool {
if r1.TypeCovered != r2.TypeCovered {
return false
}
if r1.Algorithm != r2.Algorithm {
return false
}
if r1.Labels != r2.Labels {
return false
}
if r1.OrigTtl != r2.OrigTtl {
return false
}
if r1.Expiration != r2.Expiration {
return false
}
if r1.Inception != r2.Inception {
return false
}
if r1.KeyTag != r2.KeyTag {
return false
}
if !isDulicateName(r1.SignerName, r2.SignerName) {
return false
}
if r1.Signature != r2.Signature {
return false
}
return true
}
func isDuplicateRT(r1, r2 *RT) bool {
if r1.Preference != r2.Preference {
return false
}
if !isDulicateName(r1.Host, r2.Host) {
return false
}
return true
}
func isDuplicateSMIMEA(r1, r2 *SMIMEA) bool {
if r1.Usage != r2.Usage {
return false
}
if r1.Selector != r2.Selector {
return false
}
if r1.MatchingType != r2.MatchingType {
return false
}
if r1.Certificate != r2.Certificate {
return false
}
return true
}
func isDuplicateSOA(r1, r2 *SOA) bool {
if !isDulicateName(r1.Ns, r2.Ns) {
return false
}
if !isDulicateName(r1.Mbox, r2.Mbox) {
return false
}
if r1.Serial != r2.Serial {
return false
}
if r1.Refresh != r2.Refresh {
return false
}
if r1.Retry != r2.Retry {
return false
}
if r1.Expire != r2.Expire {
return false
}
if r1.Minttl != r2.Minttl {
return false
}
return true
}
func isDuplicateSPF(r1, r2 *SPF) bool {
if len(r1.Txt) != len(r2.Txt) {
return false
}
for i := 0; i < len(r1.Txt); i++ {
if r1.Txt[i] != r2.Txt[i] {
return false
}
}
return true
}
func isDuplicateSRV(r1, r2 *SRV) bool {
if r1.Priority != r2.Priority {
return false
}
if r1.Weight != r2.Weight {
return false
}
if r1.Port != r2.Port {
return false
}
if !isDulicateName(r1.Target, r2.Target) {
return false
}
return true
}
func isDuplicateSSHFP(r1, r2 *SSHFP) bool {
if r1.Algorithm != r2.Algorithm {
return false
}
if r1.Type != r2.Type {
return false
}
if r1.FingerPrint != r2.FingerPrint {
return false
}
return true
}
func isDuplicateTA(r1, r2 *TA) bool {
if r1.KeyTag != r2.KeyTag {
return false
}
if r1.Algorithm != r2.Algorithm {
return false
}
if r1.DigestType != r2.DigestType {
return false
}
if r1.Digest != r2.Digest {
return false
}
return true
}
func isDuplicateTALINK(r1, r2 *TALINK) bool {
if !isDulicateName(r1.PreviousName, r2.PreviousName) {
return false
}
if !isDulicateName(r1.NextName, r2.NextName) {
return false
}
return true
}
func isDuplicateTKEY(r1, r2 *TKEY) bool {
if !isDulicateName(r1.Algorithm, r2.Algorithm) {
return false
}
if r1.Inception != r2.Inception {
return false
}
if r1.Expiration != r2.Expiration {
return false
}
if r1.Mode != r2.Mode {
return false
}
if r1.Error != r2.Error {
return false
}
if r1.KeySize != r2.KeySize {
return false
}
if r1.Key != r2.Key {
return false
}
if r1.OtherLen != r2.OtherLen {
return false
}
if r1.OtherData != r2.OtherData {
return false
}
return true
}
func isDuplicateTLSA(r1, r2 *TLSA) bool {
if r1.Usage != r2.Usage {
return false
}
if r1.Selector != r2.Selector {
return false
}
if r1.MatchingType != r2.MatchingType {
return false
}
if r1.Certificate != r2.Certificate {
return false
}
return true
}
func isDuplicateTSIG(r1, r2 *TSIG) bool {
if !isDulicateName(r1.Algorithm, r2.Algorithm) {
return false
}
if r1.TimeSigned != r2.TimeSigned {
return false
}
if r1.Fudge != r2.Fudge {
return false
}
if r1.MACSize != r2.MACSize {
return false
}
if r1.MAC != r2.MAC {
return false
}
if r1.OrigId != r2.OrigId {
return false
}
if r1.Error != r2.Error {
return false
}
if r1.OtherLen != r2.OtherLen {
return false
}
if r1.OtherData != r2.OtherData {
return false
}
return true
}
func isDuplicateTXT(r1, r2 *TXT) bool {
if len(r1.Txt) != len(r2.Txt) {
return false
}
for i := 0; i < len(r1.Txt); i++ {
if r1.Txt[i] != r2.Txt[i] {
return false
}
}
return true
}
func isDuplicateUID(r1, r2 *UID) bool {
if r1.Uid != r2.Uid {
return false
}
return true
}
func isDuplicateUINFO(r1, r2 *UINFO) bool {
if r1.Uinfo != r2.Uinfo {
return false
}
return true
}
func isDuplicateURI(r1, r2 *URI) bool {
if r1.Priority != r2.Priority {
return false
}
if r1.Weight != r2.Weight {
return false
}
if r1.Target != r2.Target {
return false
}
return true
}
func isDuplicateX25(r1, r2 *X25) bool {
if r1.PSDNAddress != r2.PSDNAddress {
return false
}
return true
}

3615
vendor/github.com/miekg/dns/zmsg.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

863
vendor/github.com/miekg/dns/ztypes.go generated vendored Normal file
View File

@ -0,0 +1,863 @@
// Code generated by "go run types_generate.go"; DO NOT EDIT.
package dns
import (
"encoding/base64"
"net"
)
// TypeToRR is a map of constructors for each RR type.
var TypeToRR = map[uint16]func() RR{
TypeA: func() RR { return new(A) },
TypeAAAA: func() RR { return new(AAAA) },
TypeAFSDB: func() RR { return new(AFSDB) },
TypeANY: func() RR { return new(ANY) },
TypeAVC: func() RR { return new(AVC) },
TypeCAA: func() RR { return new(CAA) },
TypeCDNSKEY: func() RR { return new(CDNSKEY) },
TypeCDS: func() RR { return new(CDS) },
TypeCERT: func() RR { return new(CERT) },
TypeCNAME: func() RR { return new(CNAME) },
TypeCSYNC: func() RR { return new(CSYNC) },
TypeDHCID: func() RR { return new(DHCID) },
TypeDLV: func() RR { return new(DLV) },
TypeDNAME: func() RR { return new(DNAME) },
TypeDNSKEY: func() RR { return new(DNSKEY) },
TypeDS: func() RR { return new(DS) },
TypeEID: func() RR { return new(EID) },
TypeEUI48: func() RR { return new(EUI48) },
TypeEUI64: func() RR { return new(EUI64) },
TypeGID: func() RR { return new(GID) },
TypeGPOS: func() RR { return new(GPOS) },
TypeHINFO: func() RR { return new(HINFO) },
TypeHIP: func() RR { return new(HIP) },
TypeKEY: func() RR { return new(KEY) },
TypeKX: func() RR { return new(KX) },
TypeL32: func() RR { return new(L32) },
TypeL64: func() RR { return new(L64) },
TypeLOC: func() RR { return new(LOC) },
TypeLP: func() RR { return new(LP) },
TypeMB: func() RR { return new(MB) },
TypeMD: func() RR { return new(MD) },
TypeMF: func() RR { return new(MF) },
TypeMG: func() RR { return new(MG) },
TypeMINFO: func() RR { return new(MINFO) },
TypeMR: func() RR { return new(MR) },
TypeMX: func() RR { return new(MX) },
TypeNAPTR: func() RR { return new(NAPTR) },
TypeNID: func() RR { return new(NID) },
TypeNIMLOC: func() RR { return new(NIMLOC) },
TypeNINFO: func() RR { return new(NINFO) },
TypeNS: func() RR { return new(NS) },
TypeNSAPPTR: func() RR { return new(NSAPPTR) },
TypeNSEC: func() RR { return new(NSEC) },
TypeNSEC3: func() RR { return new(NSEC3) },
TypeNSEC3PARAM: func() RR { return new(NSEC3PARAM) },
TypeOPENPGPKEY: func() RR { return new(OPENPGPKEY) },
TypeOPT: func() RR { return new(OPT) },
TypePTR: func() RR { return new(PTR) },
TypePX: func() RR { return new(PX) },
TypeRKEY: func() RR { return new(RKEY) },
TypeRP: func() RR { return new(RP) },
TypeRRSIG: func() RR { return new(RRSIG) },
TypeRT: func() RR { return new(RT) },
TypeSIG: func() RR { return new(SIG) },
TypeSMIMEA: func() RR { return new(SMIMEA) },
TypeSOA: func() RR { return new(SOA) },
TypeSPF: func() RR { return new(SPF) },
TypeSRV: func() RR { return new(SRV) },
TypeSSHFP: func() RR { return new(SSHFP) },
TypeTA: func() RR { return new(TA) },
TypeTALINK: func() RR { return new(TALINK) },
TypeTKEY: func() RR { return new(TKEY) },
TypeTLSA: func() RR { return new(TLSA) },
TypeTSIG: func() RR { return new(TSIG) },
TypeTXT: func() RR { return new(TXT) },
TypeUID: func() RR { return new(UID) },
TypeUINFO: func() RR { return new(UINFO) },
TypeURI: func() RR { return new(URI) },
TypeX25: func() RR { return new(X25) },
}
// TypeToString is a map of strings for each RR type.
var TypeToString = map[uint16]string{
TypeA: "A",
TypeAAAA: "AAAA",
TypeAFSDB: "AFSDB",
TypeANY: "ANY",
TypeATMA: "ATMA",
TypeAVC: "AVC",
TypeAXFR: "AXFR",
TypeCAA: "CAA",
TypeCDNSKEY: "CDNSKEY",
TypeCDS: "CDS",
TypeCERT: "CERT",
TypeCNAME: "CNAME",
TypeCSYNC: "CSYNC",
TypeDHCID: "DHCID",
TypeDLV: "DLV",
TypeDNAME: "DNAME",
TypeDNSKEY: "DNSKEY",
TypeDS: "DS",
TypeEID: "EID",
TypeEUI48: "EUI48",
TypeEUI64: "EUI64",
TypeGID: "GID",
TypeGPOS: "GPOS",
TypeHINFO: "HINFO",
TypeHIP: "HIP",
TypeISDN: "ISDN",
TypeIXFR: "IXFR",
TypeKEY: "KEY",
TypeKX: "KX",
TypeL32: "L32",
TypeL64: "L64",
TypeLOC: "LOC",
TypeLP: "LP",
TypeMAILA: "MAILA",
TypeMAILB: "MAILB",
TypeMB: "MB",
TypeMD: "MD",
TypeMF: "MF",
TypeMG: "MG",
TypeMINFO: "MINFO",
TypeMR: "MR",
TypeMX: "MX",
TypeNAPTR: "NAPTR",
TypeNID: "NID",
TypeNIMLOC: "NIMLOC",
TypeNINFO: "NINFO",
TypeNS: "NS",
TypeNSEC: "NSEC",
TypeNSEC3: "NSEC3",
TypeNSEC3PARAM: "NSEC3PARAM",
TypeNULL: "NULL",
TypeNXT: "NXT",
TypeNone: "None",
TypeOPENPGPKEY: "OPENPGPKEY",
TypeOPT: "OPT",
TypePTR: "PTR",
TypePX: "PX",
TypeRKEY: "RKEY",
TypeRP: "RP",
TypeRRSIG: "RRSIG",
TypeRT: "RT",
TypeReserved: "Reserved",
TypeSIG: "SIG",
TypeSMIMEA: "SMIMEA",
TypeSOA: "SOA",
TypeSPF: "SPF",
TypeSRV: "SRV",
TypeSSHFP: "SSHFP",
TypeTA: "TA",
TypeTALINK: "TALINK",
TypeTKEY: "TKEY",
TypeTLSA: "TLSA",
TypeTSIG: "TSIG",
TypeTXT: "TXT",
TypeUID: "UID",
TypeUINFO: "UINFO",
TypeUNSPEC: "UNSPEC",
TypeURI: "URI",
TypeX25: "X25",
TypeNSAPPTR: "NSAP-PTR",
}
func (rr *A) Header() *RR_Header { return &rr.Hdr }
func (rr *AAAA) Header() *RR_Header { return &rr.Hdr }
func (rr *AFSDB) Header() *RR_Header { return &rr.Hdr }
func (rr *ANY) Header() *RR_Header { return &rr.Hdr }
func (rr *AVC) Header() *RR_Header { return &rr.Hdr }
func (rr *CAA) Header() *RR_Header { return &rr.Hdr }
func (rr *CDNSKEY) Header() *RR_Header { return &rr.Hdr }
func (rr *CDS) Header() *RR_Header { return &rr.Hdr }
func (rr *CERT) Header() *RR_Header { return &rr.Hdr }
func (rr *CNAME) Header() *RR_Header { return &rr.Hdr }
func (rr *CSYNC) Header() *RR_Header { return &rr.Hdr }
func (rr *DHCID) Header() *RR_Header { return &rr.Hdr }
func (rr *DLV) Header() *RR_Header { return &rr.Hdr }
func (rr *DNAME) Header() *RR_Header { return &rr.Hdr }
func (rr *DNSKEY) Header() *RR_Header { return &rr.Hdr }
func (rr *DS) Header() *RR_Header { return &rr.Hdr }
func (rr *EID) Header() *RR_Header { return &rr.Hdr }
func (rr *EUI48) Header() *RR_Header { return &rr.Hdr }
func (rr *EUI64) Header() *RR_Header { return &rr.Hdr }
func (rr *GID) Header() *RR_Header { return &rr.Hdr }
func (rr *GPOS) Header() *RR_Header { return &rr.Hdr }
func (rr *HINFO) Header() *RR_Header { return &rr.Hdr }
func (rr *HIP) Header() *RR_Header { return &rr.Hdr }
func (rr *KEY) Header() *RR_Header { return &rr.Hdr }
func (rr *KX) Header() *RR_Header { return &rr.Hdr }
func (rr *L32) Header() *RR_Header { return &rr.Hdr }
func (rr *L64) Header() *RR_Header { return &rr.Hdr }
func (rr *LOC) Header() *RR_Header { return &rr.Hdr }
func (rr *LP) Header() *RR_Header { return &rr.Hdr }
func (rr *MB) Header() *RR_Header { return &rr.Hdr }
func (rr *MD) Header() *RR_Header { return &rr.Hdr }
func (rr *MF) Header() *RR_Header { return &rr.Hdr }
func (rr *MG) Header() *RR_Header { return &rr.Hdr }
func (rr *MINFO) Header() *RR_Header { return &rr.Hdr }
func (rr *MR) Header() *RR_Header { return &rr.Hdr }
func (rr *MX) Header() *RR_Header { return &rr.Hdr }
func (rr *NAPTR) Header() *RR_Header { return &rr.Hdr }
func (rr *NID) Header() *RR_Header { return &rr.Hdr }
func (rr *NIMLOC) Header() *RR_Header { return &rr.Hdr }
func (rr *NINFO) Header() *RR_Header { return &rr.Hdr }
func (rr *NS) Header() *RR_Header { return &rr.Hdr }
func (rr *NSAPPTR) Header() *RR_Header { return &rr.Hdr }
func (rr *NSEC) Header() *RR_Header { return &rr.Hdr }
func (rr *NSEC3) Header() *RR_Header { return &rr.Hdr }
func (rr *NSEC3PARAM) Header() *RR_Header { return &rr.Hdr }
func (rr *OPENPGPKEY) Header() *RR_Header { return &rr.Hdr }
func (rr *OPT) Header() *RR_Header { return &rr.Hdr }
func (rr *PTR) Header() *RR_Header { return &rr.Hdr }
func (rr *PX) Header() *RR_Header { return &rr.Hdr }
func (rr *RFC3597) Header() *RR_Header { return &rr.Hdr }
func (rr *RKEY) Header() *RR_Header { return &rr.Hdr }
func (rr *RP) Header() *RR_Header { return &rr.Hdr }
func (rr *RRSIG) Header() *RR_Header { return &rr.Hdr }
func (rr *RT) Header() *RR_Header { return &rr.Hdr }
func (rr *SIG) Header() *RR_Header { return &rr.Hdr }
func (rr *SMIMEA) Header() *RR_Header { return &rr.Hdr }
func (rr *SOA) Header() *RR_Header { return &rr.Hdr }
func (rr *SPF) Header() *RR_Header { return &rr.Hdr }
func (rr *SRV) Header() *RR_Header { return &rr.Hdr }
func (rr *SSHFP) Header() *RR_Header { return &rr.Hdr }
func (rr *TA) Header() *RR_Header { return &rr.Hdr }
func (rr *TALINK) Header() *RR_Header { return &rr.Hdr }
func (rr *TKEY) Header() *RR_Header { return &rr.Hdr }
func (rr *TLSA) Header() *RR_Header { return &rr.Hdr }
func (rr *TSIG) Header() *RR_Header { return &rr.Hdr }
func (rr *TXT) Header() *RR_Header { return &rr.Hdr }
func (rr *UID) Header() *RR_Header { return &rr.Hdr }
func (rr *UINFO) Header() *RR_Header { return &rr.Hdr }
func (rr *URI) Header() *RR_Header { return &rr.Hdr }
func (rr *X25) Header() *RR_Header { return &rr.Hdr }
// len() functions
func (rr *A) len() int {
l := rr.Hdr.len()
l += net.IPv4len // A
return l
}
func (rr *AAAA) len() int {
l := rr.Hdr.len()
l += net.IPv6len // AAAA
return l
}
func (rr *AFSDB) len() int {
l := rr.Hdr.len()
l += 2 // Subtype
l += len(rr.Hostname) + 1
return l
}
func (rr *ANY) len() int {
l := rr.Hdr.len()
return l
}
func (rr *AVC) len() int {
l := rr.Hdr.len()
for _, x := range rr.Txt {
l += len(x) + 1
}
return l
}
func (rr *CAA) len() int {
l := rr.Hdr.len()
l++ // Flag
l += len(rr.Tag) + 1
l += len(rr.Value)
return l
}
func (rr *CERT) len() int {
l := rr.Hdr.len()
l += 2 // Type
l += 2 // KeyTag
l++ // Algorithm
l += base64.StdEncoding.DecodedLen(len(rr.Certificate))
return l
}
func (rr *CNAME) len() int {
l := rr.Hdr.len()
l += len(rr.Target) + 1
return l
}
func (rr *DHCID) len() int {
l := rr.Hdr.len()
l += base64.StdEncoding.DecodedLen(len(rr.Digest))
return l
}
func (rr *DNAME) len() int {
l := rr.Hdr.len()
l += len(rr.Target) + 1
return l
}
func (rr *DNSKEY) len() int {
l := rr.Hdr.len()
l += 2 // Flags
l++ // Protocol
l++ // Algorithm
l += base64.StdEncoding.DecodedLen(len(rr.PublicKey))
return l
}
func (rr *DS) len() int {
l := rr.Hdr.len()
l += 2 // KeyTag
l++ // Algorithm
l++ // DigestType
l += len(rr.Digest)/2 + 1
return l
}
func (rr *EID) len() int {
l := rr.Hdr.len()
l += len(rr.Endpoint)/2 + 1
return l
}
func (rr *EUI48) len() int {
l := rr.Hdr.len()
l += 6 // Address
return l
}
func (rr *EUI64) len() int {
l := rr.Hdr.len()
l += 8 // Address
return l
}
func (rr *GID) len() int {
l := rr.Hdr.len()
l += 4 // Gid
return l
}
func (rr *GPOS) len() int {
l := rr.Hdr.len()
l += len(rr.Longitude) + 1
l += len(rr.Latitude) + 1
l += len(rr.Altitude) + 1
return l
}
func (rr *HINFO) len() int {
l := rr.Hdr.len()
l += len(rr.Cpu) + 1
l += len(rr.Os) + 1
return l
}
func (rr *HIP) len() int {
l := rr.Hdr.len()
l++ // HitLength
l++ // PublicKeyAlgorithm
l += 2 // PublicKeyLength
l += len(rr.Hit) / 2
l += base64.StdEncoding.DecodedLen(len(rr.PublicKey))
for _, x := range rr.RendezvousServers {
l += len(x) + 1
}
return l
}
func (rr *KX) len() int {
l := rr.Hdr.len()
l += 2 // Preference
l += len(rr.Exchanger) + 1
return l
}
func (rr *L32) len() int {
l := rr.Hdr.len()
l += 2 // Preference
l += net.IPv4len // Locator32
return l
}
func (rr *L64) len() int {
l := rr.Hdr.len()
l += 2 // Preference
l += 8 // Locator64
return l
}
func (rr *LOC) len() int {
l := rr.Hdr.len()
l++ // Version
l++ // Size
l++ // HorizPre
l++ // VertPre
l += 4 // Latitude
l += 4 // Longitude
l += 4 // Altitude
return l
}
func (rr *LP) len() int {
l := rr.Hdr.len()
l += 2 // Preference
l += len(rr.Fqdn) + 1
return l
}
func (rr *MB) len() int {
l := rr.Hdr.len()
l += len(rr.Mb) + 1
return l
}
func (rr *MD) len() int {
l := rr.Hdr.len()
l += len(rr.Md) + 1
return l
}
func (rr *MF) len() int {
l := rr.Hdr.len()
l += len(rr.Mf) + 1
return l
}
func (rr *MG) len() int {
l := rr.Hdr.len()
l += len(rr.Mg) + 1
return l
}
func (rr *MINFO) len() int {
l := rr.Hdr.len()
l += len(rr.Rmail) + 1
l += len(rr.Email) + 1
return l
}
func (rr *MR) len() int {
l := rr.Hdr.len()
l += len(rr.Mr) + 1
return l
}
func (rr *MX) len() int {
l := rr.Hdr.len()
l += 2 // Preference
l += len(rr.Mx) + 1
return l
}
func (rr *NAPTR) len() int {
l := rr.Hdr.len()
l += 2 // Order
l += 2 // Preference
l += len(rr.Flags) + 1
l += len(rr.Service) + 1
l += len(rr.Regexp) + 1
l += len(rr.Replacement) + 1
return l
}
func (rr *NID) len() int {
l := rr.Hdr.len()
l += 2 // Preference
l += 8 // NodeID
return l
}
func (rr *NIMLOC) len() int {
l := rr.Hdr.len()
l += len(rr.Locator)/2 + 1
return l
}
func (rr *NINFO) len() int {
l := rr.Hdr.len()
for _, x := range rr.ZSData {
l += len(x) + 1
}
return l
}
func (rr *NS) len() int {
l := rr.Hdr.len()
l += len(rr.Ns) + 1
return l
}
func (rr *NSAPPTR) len() int {
l := rr.Hdr.len()
l += len(rr.Ptr) + 1
return l
}
func (rr *NSEC3PARAM) len() int {
l := rr.Hdr.len()
l++ // Hash
l++ // Flags
l += 2 // Iterations
l++ // SaltLength
l += len(rr.Salt) / 2
return l
}
func (rr *OPENPGPKEY) len() int {
l := rr.Hdr.len()
l += base64.StdEncoding.DecodedLen(len(rr.PublicKey))
return l
}
func (rr *PTR) len() int {
l := rr.Hdr.len()
l += len(rr.Ptr) + 1
return l
}
func (rr *PX) len() int {
l := rr.Hdr.len()
l += 2 // Preference
l += len(rr.Map822) + 1
l += len(rr.Mapx400) + 1
return l
}
func (rr *RFC3597) len() int {
l := rr.Hdr.len()
l += len(rr.Rdata)/2 + 1
return l
}
func (rr *RKEY) len() int {
l := rr.Hdr.len()
l += 2 // Flags
l++ // Protocol
l++ // Algorithm
l += base64.StdEncoding.DecodedLen(len(rr.PublicKey))
return l
}
func (rr *RP) len() int {
l := rr.Hdr.len()
l += len(rr.Mbox) + 1
l += len(rr.Txt) + 1
return l
}
func (rr *RRSIG) len() int {
l := rr.Hdr.len()
l += 2 // TypeCovered
l++ // Algorithm
l++ // Labels
l += 4 // OrigTtl
l += 4 // Expiration
l += 4 // Inception
l += 2 // KeyTag
l += len(rr.SignerName) + 1
l += base64.StdEncoding.DecodedLen(len(rr.Signature))
return l
}
func (rr *RT) len() int {
l := rr.Hdr.len()
l += 2 // Preference
l += len(rr.Host) + 1
return l
}
func (rr *SMIMEA) len() int {
l := rr.Hdr.len()
l++ // Usage
l++ // Selector
l++ // MatchingType
l += len(rr.Certificate)/2 + 1
return l
}
func (rr *SOA) len() int {
l := rr.Hdr.len()
l += len(rr.Ns) + 1
l += len(rr.Mbox) + 1
l += 4 // Serial
l += 4 // Refresh
l += 4 // Retry
l += 4 // Expire
l += 4 // Minttl
return l
}
func (rr *SPF) len() int {
l := rr.Hdr.len()
for _, x := range rr.Txt {
l += len(x) + 1
}
return l
}
func (rr *SRV) len() int {
l := rr.Hdr.len()
l += 2 // Priority
l += 2 // Weight
l += 2 // Port
l += len(rr.Target) + 1
return l
}
func (rr *SSHFP) len() int {
l := rr.Hdr.len()
l++ // Algorithm
l++ // Type
l += len(rr.FingerPrint)/2 + 1
return l
}
func (rr *TA) len() int {
l := rr.Hdr.len()
l += 2 // KeyTag
l++ // Algorithm
l++ // DigestType
l += len(rr.Digest)/2 + 1
return l
}
func (rr *TALINK) len() int {
l := rr.Hdr.len()
l += len(rr.PreviousName) + 1
l += len(rr.NextName) + 1
return l
}
func (rr *TKEY) len() int {
l := rr.Hdr.len()
l += len(rr.Algorithm) + 1
l += 4 // Inception
l += 4 // Expiration
l += 2 // Mode
l += 2 // Error
l += 2 // KeySize
l += len(rr.Key) / 2
l += 2 // OtherLen
l += len(rr.OtherData) / 2
return l
}
func (rr *TLSA) len() int {
l := rr.Hdr.len()
l++ // Usage
l++ // Selector
l++ // MatchingType
l += len(rr.Certificate)/2 + 1
return l
}
func (rr *TSIG) len() int {
l := rr.Hdr.len()
l += len(rr.Algorithm) + 1
l += 6 // TimeSigned
l += 2 // Fudge
l += 2 // MACSize
l += len(rr.MAC) / 2
l += 2 // OrigId
l += 2 // Error
l += 2 // OtherLen
l += len(rr.OtherData) / 2
return l
}
func (rr *TXT) len() int {
l := rr.Hdr.len()
for _, x := range rr.Txt {
l += len(x) + 1
}
return l
}
func (rr *UID) len() int {
l := rr.Hdr.len()
l += 4 // Uid
return l
}
func (rr *UINFO) len() int {
l := rr.Hdr.len()
l += len(rr.Uinfo) + 1
return l
}
func (rr *URI) len() int {
l := rr.Hdr.len()
l += 2 // Priority
l += 2 // Weight
l += len(rr.Target)
return l
}
func (rr *X25) len() int {
l := rr.Hdr.len()
l += len(rr.PSDNAddress) + 1
return l
}
// copy() functions
func (rr *A) copy() RR {
return &A{rr.Hdr, copyIP(rr.A)}
}
func (rr *AAAA) copy() RR {
return &AAAA{rr.Hdr, copyIP(rr.AAAA)}
}
func (rr *AFSDB) copy() RR {
return &AFSDB{rr.Hdr, rr.Subtype, rr.Hostname}
}
func (rr *ANY) copy() RR {
return &ANY{rr.Hdr}
}
func (rr *AVC) copy() RR {
Txt := make([]string, len(rr.Txt))
copy(Txt, rr.Txt)
return &AVC{rr.Hdr, Txt}
}
func (rr *CAA) copy() RR {
return &CAA{rr.Hdr, rr.Flag, rr.Tag, rr.Value}
}
func (rr *CERT) copy() RR {
return &CERT{rr.Hdr, rr.Type, rr.KeyTag, rr.Algorithm, rr.Certificate}
}
func (rr *CNAME) copy() RR {
return &CNAME{rr.Hdr, rr.Target}
}
func (rr *CSYNC) copy() RR {
TypeBitMap := make([]uint16, len(rr.TypeBitMap))
copy(TypeBitMap, rr.TypeBitMap)
return &CSYNC{rr.Hdr, rr.Serial, rr.Flags, TypeBitMap}
}
func (rr *DHCID) copy() RR {
return &DHCID{rr.Hdr, rr.Digest}
}
func (rr *DNAME) copy() RR {
return &DNAME{rr.Hdr, rr.Target}
}
func (rr *DNSKEY) copy() RR {
return &DNSKEY{rr.Hdr, rr.Flags, rr.Protocol, rr.Algorithm, rr.PublicKey}
}
func (rr *DS) copy() RR {
return &DS{rr.Hdr, rr.KeyTag, rr.Algorithm, rr.DigestType, rr.Digest}
}
func (rr *EID) copy() RR {
return &EID{rr.Hdr, rr.Endpoint}
}
func (rr *EUI48) copy() RR {
return &EUI48{rr.Hdr, rr.Address}
}
func (rr *EUI64) copy() RR {
return &EUI64{rr.Hdr, rr.Address}
}
func (rr *GID) copy() RR {
return &GID{rr.Hdr, rr.Gid}
}
func (rr *GPOS) copy() RR {
return &GPOS{rr.Hdr, rr.Longitude, rr.Latitude, rr.Altitude}
}
func (rr *HINFO) copy() RR {
return &HINFO{rr.Hdr, rr.Cpu, rr.Os}
}
func (rr *HIP) copy() RR {
RendezvousServers := make([]string, len(rr.RendezvousServers))
copy(RendezvousServers, rr.RendezvousServers)
return &HIP{rr.Hdr, rr.HitLength, rr.PublicKeyAlgorithm, rr.PublicKeyLength, rr.Hit, rr.PublicKey, RendezvousServers}
}
func (rr *KX) copy() RR {
return &KX{rr.Hdr, rr.Preference, rr.Exchanger}
}
func (rr *L32) copy() RR {
return &L32{rr.Hdr, rr.Preference, copyIP(rr.Locator32)}
}
func (rr *L64) copy() RR {
return &L64{rr.Hdr, rr.Preference, rr.Locator64}
}
func (rr *LOC) copy() RR {
return &LOC{rr.Hdr, rr.Version, rr.Size, rr.HorizPre, rr.VertPre, rr.Latitude, rr.Longitude, rr.Altitude}
}
func (rr *LP) copy() RR {
return &LP{rr.Hdr, rr.Preference, rr.Fqdn}
}
func (rr *MB) copy() RR {
return &MB{rr.Hdr, rr.Mb}
}
func (rr *MD) copy() RR {
return &MD{rr.Hdr, rr.Md}
}
func (rr *MF) copy() RR {
return &MF{rr.Hdr, rr.Mf}
}
func (rr *MG) copy() RR {
return &MG{rr.Hdr, rr.Mg}
}
func (rr *MINFO) copy() RR {
return &MINFO{rr.Hdr, rr.Rmail, rr.Email}
}
func (rr *MR) copy() RR {
return &MR{rr.Hdr, rr.Mr}
}
func (rr *MX) copy() RR {
return &MX{rr.Hdr, rr.Preference, rr.Mx}
}
func (rr *NAPTR) copy() RR {
return &NAPTR{rr.Hdr, rr.Order, rr.Preference, rr.Flags, rr.Service, rr.Regexp, rr.Replacement}
}
func (rr *NID) copy() RR {
return &NID{rr.Hdr, rr.Preference, rr.NodeID}
}
func (rr *NIMLOC) copy() RR {
return &NIMLOC{rr.Hdr, rr.Locator}
}
func (rr *NINFO) copy() RR {
ZSData := make([]string, len(rr.ZSData))
copy(ZSData, rr.ZSData)
return &NINFO{rr.Hdr, ZSData}
}
func (rr *NS) copy() RR {
return &NS{rr.Hdr, rr.Ns}
}
func (rr *NSAPPTR) copy() RR {
return &NSAPPTR{rr.Hdr, rr.Ptr}
}
func (rr *NSEC) copy() RR {
TypeBitMap := make([]uint16, len(rr.TypeBitMap))
copy(TypeBitMap, rr.TypeBitMap)
return &NSEC{rr.Hdr, rr.NextDomain, TypeBitMap}
}
func (rr *NSEC3) copy() RR {
TypeBitMap := make([]uint16, len(rr.TypeBitMap))
copy(TypeBitMap, rr.TypeBitMap)
return &NSEC3{rr.Hdr, rr.Hash, rr.Flags, rr.Iterations, rr.SaltLength, rr.Salt, rr.HashLength, rr.NextDomain, TypeBitMap}
}
func (rr *NSEC3PARAM) copy() RR {
return &NSEC3PARAM{rr.Hdr, rr.Hash, rr.Flags, rr.Iterations, rr.SaltLength, rr.Salt}
}
func (rr *OPENPGPKEY) copy() RR {
return &OPENPGPKEY{rr.Hdr, rr.PublicKey}
}
func (rr *OPT) copy() RR {
Option := make([]EDNS0, len(rr.Option))
copy(Option, rr.Option)
return &OPT{rr.Hdr, Option}
}
func (rr *PTR) copy() RR {
return &PTR{rr.Hdr, rr.Ptr}
}
func (rr *PX) copy() RR {
return &PX{rr.Hdr, rr.Preference, rr.Map822, rr.Mapx400}
}
func (rr *RFC3597) copy() RR {
return &RFC3597{rr.Hdr, rr.Rdata}
}
func (rr *RKEY) copy() RR {
return &RKEY{rr.Hdr, rr.Flags, rr.Protocol, rr.Algorithm, rr.PublicKey}
}
func (rr *RP) copy() RR {
return &RP{rr.Hdr, rr.Mbox, rr.Txt}
}
func (rr *RRSIG) copy() RR {
return &RRSIG{rr.Hdr, rr.TypeCovered, rr.Algorithm, rr.Labels, rr.OrigTtl, rr.Expiration, rr.Inception, rr.KeyTag, rr.SignerName, rr.Signature}
}
func (rr *RT) copy() RR {
return &RT{rr.Hdr, rr.Preference, rr.Host}
}
func (rr *SMIMEA) copy() RR {
return &SMIMEA{rr.Hdr, rr.Usage, rr.Selector, rr.MatchingType, rr.Certificate}
}
func (rr *SOA) copy() RR {
return &SOA{rr.Hdr, rr.Ns, rr.Mbox, rr.Serial, rr.Refresh, rr.Retry, rr.Expire, rr.Minttl}
}
func (rr *SPF) copy() RR {
Txt := make([]string, len(rr.Txt))
copy(Txt, rr.Txt)
return &SPF{rr.Hdr, Txt}
}
func (rr *SRV) copy() RR {
return &SRV{rr.Hdr, rr.Priority, rr.Weight, rr.Port, rr.Target}
}
func (rr *SSHFP) copy() RR {
return &SSHFP{rr.Hdr, rr.Algorithm, rr.Type, rr.FingerPrint}
}
func (rr *TA) copy() RR {
return &TA{rr.Hdr, rr.KeyTag, rr.Algorithm, rr.DigestType, rr.Digest}
}
func (rr *TALINK) copy() RR {
return &TALINK{rr.Hdr, rr.PreviousName, rr.NextName}
}
func (rr *TKEY) copy() RR {
return &TKEY{rr.Hdr, rr.Algorithm, rr.Inception, rr.Expiration, rr.Mode, rr.Error, rr.KeySize, rr.Key, rr.OtherLen, rr.OtherData}
}
func (rr *TLSA) copy() RR {
return &TLSA{rr.Hdr, rr.Usage, rr.Selector, rr.MatchingType, rr.Certificate}
}
func (rr *TSIG) copy() RR {
return &TSIG{rr.Hdr, rr.Algorithm, rr.TimeSigned, rr.Fudge, rr.MACSize, rr.MAC, rr.OrigId, rr.Error, rr.OtherLen, rr.OtherData}
}
func (rr *TXT) copy() RR {
Txt := make([]string, len(rr.Txt))
copy(Txt, rr.Txt)
return &TXT{rr.Hdr, Txt}
}
func (rr *UID) copy() RR {
return &UID{rr.Hdr, rr.Uid}
}
func (rr *UINFO) copy() RR {
return &UINFO{rr.Hdr, rr.Uinfo}
}
func (rr *URI) copy() RR {
return &URI{rr.Hdr, rr.Priority, rr.Weight, rr.Target}
}
func (rr *X25) copy() RR {
return &X25{rr.Hdr, rr.PSDNAddress}
}

11
vendor/golang.org/x/net/internal/socket/cmsghdr.go generated vendored Normal file
View File

@ -0,0 +1,11 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build darwin dragonfly freebsd linux netbsd openbsd solaris
package socket
func (h *cmsghdr) len() int { return int(h.Len) }
func (h *cmsghdr) lvl() int { return int(h.Level) }
func (h *cmsghdr) typ() int { return int(h.Type) }

13
vendor/golang.org/x/net/internal/socket/cmsghdr_bsd.go generated vendored Normal file
View File

@ -0,0 +1,13 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build darwin dragonfly freebsd netbsd openbsd
package socket
func (h *cmsghdr) set(l, lvl, typ int) {
h.Len = uint32(l)
h.Level = int32(lvl)
h.Type = int32(typ)
}

View File

@ -0,0 +1,14 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build arm mips mipsle 386
// +build linux
package socket
func (h *cmsghdr) set(l, lvl, typ int) {
h.Len = uint32(l)
h.Level = int32(lvl)
h.Type = int32(typ)
}

View File

@ -0,0 +1,14 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build arm64 amd64 ppc64 ppc64le mips64 mips64le s390x
// +build linux
package socket
func (h *cmsghdr) set(l, lvl, typ int) {
h.Len = uint64(l)
h.Level = int32(lvl)
h.Type = int32(typ)
}

View File

@ -0,0 +1,14 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build amd64
// +build solaris
package socket
func (h *cmsghdr) set(l, lvl, typ int) {
h.Len = uint32(l)
h.Level = int32(lvl)
h.Type = int32(typ)
}

View File

@ -0,0 +1,17 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !darwin,!dragonfly,!freebsd,!linux,!netbsd,!openbsd,!solaris
package socket
type cmsghdr struct{}
const sizeofCmsghdr = 0
func (h *cmsghdr) len() int { return 0 }
func (h *cmsghdr) lvl() int { return 0 }
func (h *cmsghdr) typ() int { return 0 }
func (h *cmsghdr) set(l, lvl, typ int) {}

31
vendor/golang.org/x/net/internal/socket/error_unix.go generated vendored Normal file
View File

@ -0,0 +1,31 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build darwin dragonfly freebsd linux netbsd openbsd solaris
package socket
import "syscall"
var (
errEAGAIN error = syscall.EAGAIN
errEINVAL error = syscall.EINVAL
errENOENT error = syscall.ENOENT
)
// errnoErr returns common boxed Errno values, to prevent allocations
// at runtime.
func errnoErr(errno syscall.Errno) error {
switch errno {
case 0:
return nil
case syscall.EAGAIN:
return errEAGAIN
case syscall.EINVAL:
return errEINVAL
case syscall.ENOENT:
return errENOENT
}
return errno
}

View File

@ -0,0 +1,26 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package socket
import "syscall"
var (
errERROR_IO_PENDING error = syscall.ERROR_IO_PENDING
errEINVAL error = syscall.EINVAL
)
// errnoErr returns common boxed Errno values, to prevent allocations
// at runtime.
func errnoErr(errno syscall.Errno) error {
switch errno {
case 0:
return nil
case syscall.ERROR_IO_PENDING:
return errERROR_IO_PENDING
case syscall.EINVAL:
return errEINVAL
}
return errno
}

19
vendor/golang.org/x/net/internal/socket/iovec_32bit.go generated vendored Normal file
View File

@ -0,0 +1,19 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build arm mips mipsle 386
// +build darwin dragonfly freebsd linux netbsd openbsd
package socket
import "unsafe"
func (v *iovec) set(b []byte) {
l := len(b)
if l == 0 {
return
}
v.Base = (*byte)(unsafe.Pointer(&b[0]))
v.Len = uint32(l)
}

19
vendor/golang.org/x/net/internal/socket/iovec_64bit.go generated vendored Normal file
View File

@ -0,0 +1,19 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build arm64 amd64 ppc64 ppc64le mips64 mips64le s390x
// +build darwin dragonfly freebsd linux netbsd openbsd
package socket
import "unsafe"
func (v *iovec) set(b []byte) {
l := len(b)
if l == 0 {
return
}
v.Base = (*byte)(unsafe.Pointer(&b[0]))
v.Len = uint64(l)
}

View File

@ -0,0 +1,19 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build amd64
// +build solaris
package socket
import "unsafe"
func (v *iovec) set(b []byte) {
l := len(b)
if l == 0 {
return
}
v.Base = (*int8)(unsafe.Pointer(&b[0]))
v.Len = uint64(l)
}

11
vendor/golang.org/x/net/internal/socket/iovec_stub.go generated vendored Normal file
View File

@ -0,0 +1,11 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !darwin,!dragonfly,!freebsd,!linux,!netbsd,!openbsd,!solaris
package socket
type iovec struct{}
func (v *iovec) set(b []byte) {}

View File

@ -0,0 +1,21 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !linux,!netbsd
package socket
import "net"
type mmsghdr struct{}
type mmsghdrs []mmsghdr
func (hs mmsghdrs) pack(ms []Message, parseFn func([]byte, string) (net.Addr, error), marshalFn func(net.Addr) []byte) error {
return nil
}
func (hs mmsghdrs) unpack(ms []Message, parseFn func([]byte, string) (net.Addr, error), hint string) error {
return nil
}

View File

@ -0,0 +1,42 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build linux netbsd
package socket
import "net"
type mmsghdrs []mmsghdr
func (hs mmsghdrs) pack(ms []Message, parseFn func([]byte, string) (net.Addr, error), marshalFn func(net.Addr) []byte) error {
for i := range hs {
vs := make([]iovec, len(ms[i].Buffers))
var sa []byte
if parseFn != nil {
sa = make([]byte, sizeofSockaddrInet6)
}
if marshalFn != nil {
sa = marshalFn(ms[i].Addr)
}
hs[i].Hdr.pack(vs, ms[i].Buffers, ms[i].OOB, sa)
}
return nil
}
func (hs mmsghdrs) unpack(ms []Message, parseFn func([]byte, string) (net.Addr, error), hint string) error {
for i := range hs {
ms[i].N = int(hs[i].Len)
ms[i].NN = hs[i].Hdr.controllen()
ms[i].Flags = hs[i].Hdr.flags()
if parseFn != nil {
var err error
ms[i].Addr, err = parseFn(hs[i].Hdr.name(), hint)
if err != nil {
return err
}
}
}
return nil
}

39
vendor/golang.org/x/net/internal/socket/msghdr_bsd.go generated vendored Normal file
View File

@ -0,0 +1,39 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build darwin dragonfly freebsd netbsd openbsd
package socket
import "unsafe"
func (h *msghdr) pack(vs []iovec, bs [][]byte, oob []byte, sa []byte) {
for i := range vs {
vs[i].set(bs[i])
}
h.setIov(vs)
if len(oob) > 0 {
h.Control = (*byte)(unsafe.Pointer(&oob[0]))
h.Controllen = uint32(len(oob))
}
if sa != nil {
h.Name = (*byte)(unsafe.Pointer(&sa[0]))
h.Namelen = uint32(len(sa))
}
}
func (h *msghdr) name() []byte {
if h.Name != nil && h.Namelen > 0 {
return (*[sizeofSockaddrInet6]byte)(unsafe.Pointer(h.Name))[:h.Namelen]
}
return nil
}
func (h *msghdr) controllen() int {
return int(h.Controllen)
}
func (h *msghdr) flags() int {
return int(h.Flags)
}

View File

@ -0,0 +1,16 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build darwin dragonfly freebsd netbsd
package socket
func (h *msghdr) setIov(vs []iovec) {
l := len(vs)
if l == 0 {
return
}
h.Iov = &vs[0]
h.Iovlen = int32(l)
}

View File

@ -0,0 +1,36 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package socket
import "unsafe"
func (h *msghdr) pack(vs []iovec, bs [][]byte, oob []byte, sa []byte) {
for i := range vs {
vs[i].set(bs[i])
}
h.setIov(vs)
if len(oob) > 0 {
h.setControl(oob)
}
if sa != nil {
h.Name = (*byte)(unsafe.Pointer(&sa[0]))
h.Namelen = uint32(len(sa))
}
}
func (h *msghdr) name() []byte {
if h.Name != nil && h.Namelen > 0 {
return (*[sizeofSockaddrInet6]byte)(unsafe.Pointer(h.Name))[:h.Namelen]
}
return nil
}
func (h *msghdr) controllen() int {
return int(h.Controllen)
}
func (h *msghdr) flags() int {
return int(h.Flags)
}

View File

@ -0,0 +1,24 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build arm mips mipsle 386
// +build linux
package socket
import "unsafe"
func (h *msghdr) setIov(vs []iovec) {
l := len(vs)
if l == 0 {
return
}
h.Iov = &vs[0]
h.Iovlen = uint32(l)
}
func (h *msghdr) setControl(b []byte) {
h.Control = (*byte)(unsafe.Pointer(&b[0]))
h.Controllen = uint32(len(b))
}

View File

@ -0,0 +1,24 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build arm64 amd64 ppc64 ppc64le mips64 mips64le s390x
// +build linux
package socket
import "unsafe"
func (h *msghdr) setIov(vs []iovec) {
l := len(vs)
if l == 0 {
return
}
h.Iov = &vs[0]
h.Iovlen = uint64(l)
}
func (h *msghdr) setControl(b []byte) {
h.Control = (*byte)(unsafe.Pointer(&b[0]))
h.Controllen = uint64(len(b))
}

View File

@ -0,0 +1,14 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package socket
func (h *msghdr) setIov(vs []iovec) {
l := len(vs)
if l == 0 {
return
}
h.Iov = &vs[0]
h.Iovlen = uint32(l)
}

View File

@ -0,0 +1,36 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build amd64
// +build solaris
package socket
import "unsafe"
func (h *msghdr) pack(vs []iovec, bs [][]byte, oob []byte, sa []byte) {
for i := range vs {
vs[i].set(bs[i])
}
if len(vs) > 0 {
h.Iov = &vs[0]
h.Iovlen = int32(len(vs))
}
if len(oob) > 0 {
h.Accrights = (*int8)(unsafe.Pointer(&oob[0]))
h.Accrightslen = int32(len(oob))
}
if sa != nil {
h.Name = (*byte)(unsafe.Pointer(&sa[0]))
h.Namelen = uint32(len(sa))
}
}
func (h *msghdr) controllen() int {
return int(h.Accrightslen)
}
func (h *msghdr) flags() int {
return int(NativeEndian.Uint32(h.Pad_cgo_2[:]))
}

14
vendor/golang.org/x/net/internal/socket/msghdr_stub.go generated vendored Normal file
View File

@ -0,0 +1,14 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !darwin,!dragonfly,!freebsd,!linux,!netbsd,!openbsd,!solaris
package socket
type msghdr struct{}
func (h *msghdr) pack(vs []iovec, bs [][]byte, oob []byte, sa []byte) {}
func (h *msghdr) name() []byte { return nil }
func (h *msghdr) controllen() int { return 0 }
func (h *msghdr) flags() int { return 0 }

66
vendor/golang.org/x/net/internal/socket/rawconn.go generated vendored Normal file
View File

@ -0,0 +1,66 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.9
package socket
import (
"errors"
"net"
"os"
"syscall"
)
// A Conn represents a raw connection.
type Conn struct {
network string
c syscall.RawConn
}
// NewConn returns a new raw connection.
func NewConn(c net.Conn) (*Conn, error) {
var err error
var cc Conn
switch c := c.(type) {
case *net.TCPConn:
cc.network = "tcp"
cc.c, err = c.SyscallConn()
case *net.UDPConn:
cc.network = "udp"
cc.c, err = c.SyscallConn()
case *net.IPConn:
cc.network = "ip"
cc.c, err = c.SyscallConn()
default:
return nil, errors.New("unknown connection type")
}
if err != nil {
return nil, err
}
return &cc, nil
}
func (o *Option) get(c *Conn, b []byte) (int, error) {
var operr error
var n int
fn := func(s uintptr) {
n, operr = getsockopt(s, o.Level, o.Name, b)
}
if err := c.c.Control(fn); err != nil {
return 0, err
}
return n, os.NewSyscallError("getsockopt", operr)
}
func (o *Option) set(c *Conn, b []byte) error {
var operr error
fn := func(s uintptr) {
operr = setsockopt(s, o.Level, o.Name, b)
}
if err := c.c.Control(fn); err != nil {
return err
}
return os.NewSyscallError("setsockopt", operr)
}

View File

@ -0,0 +1,74 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.9
// +build linux
package socket
import (
"net"
"os"
"syscall"
)
func (c *Conn) recvMsgs(ms []Message, flags int) (int, error) {
hs := make(mmsghdrs, len(ms))
var parseFn func([]byte, string) (net.Addr, error)
if c.network != "tcp" {
parseFn = parseInetAddr
}
if err := hs.pack(ms, parseFn, nil); err != nil {
return 0, err
}
var operr error
var n int
fn := func(s uintptr) bool {
n, operr = recvmmsg(s, hs, flags)
if operr == syscall.EAGAIN {
return false
}
return true
}
if err := c.c.Read(fn); err != nil {
return n, err
}
if operr != nil {
return n, os.NewSyscallError("recvmmsg", operr)
}
if err := hs[:n].unpack(ms[:n], parseFn, c.network); err != nil {
return n, err
}
return n, nil
}
func (c *Conn) sendMsgs(ms []Message, flags int) (int, error) {
hs := make(mmsghdrs, len(ms))
var marshalFn func(net.Addr) []byte
if c.network != "tcp" {
marshalFn = marshalInetAddr
}
if err := hs.pack(ms, nil, marshalFn); err != nil {
return 0, err
}
var operr error
var n int
fn := func(s uintptr) bool {
n, operr = sendmmsg(s, hs, flags)
if operr == syscall.EAGAIN {
return false
}
return true
}
if err := c.c.Write(fn); err != nil {
return n, err
}
if operr != nil {
return n, os.NewSyscallError("sendmmsg", operr)
}
if err := hs[:n].unpack(ms[:n], nil, ""); err != nil {
return n, err
}
return n, nil
}

77
vendor/golang.org/x/net/internal/socket/rawconn_msg.go generated vendored Normal file
View File

@ -0,0 +1,77 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.9
// +build darwin dragonfly freebsd linux netbsd openbsd solaris windows
package socket
import (
"os"
"syscall"
)
func (c *Conn) recvMsg(m *Message, flags int) error {
var h msghdr
vs := make([]iovec, len(m.Buffers))
var sa []byte
if c.network != "tcp" {
sa = make([]byte, sizeofSockaddrInet6)
}
h.pack(vs, m.Buffers, m.OOB, sa)
var operr error
var n int
fn := func(s uintptr) bool {
n, operr = recvmsg(s, &h, flags)
if operr == syscall.EAGAIN {
return false
}
return true
}
if err := c.c.Read(fn); err != nil {
return err
}
if operr != nil {
return os.NewSyscallError("recvmsg", operr)
}
if c.network != "tcp" {
var err error
m.Addr, err = parseInetAddr(sa[:], c.network)
if err != nil {
return err
}
}
m.N = n
m.NN = h.controllen()
m.Flags = h.flags()
return nil
}
func (c *Conn) sendMsg(m *Message, flags int) error {
var h msghdr
vs := make([]iovec, len(m.Buffers))
var sa []byte
if m.Addr != nil {
sa = marshalInetAddr(m.Addr)
}
h.pack(vs, m.Buffers, m.OOB, sa)
var operr error
var n int
fn := func(s uintptr) bool {
n, operr = sendmsg(s, &h, flags)
if operr == syscall.EAGAIN {
return false
}
return true
}
if err := c.c.Write(fn); err != nil {
return err
}
if operr != nil {
return os.NewSyscallError("sendmsg", operr)
}
m.N = n
m.NN = len(m.OOB)
return nil
}

View File

@ -0,0 +1,18 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.9
// +build !linux
package socket
import "errors"
func (c *Conn) recvMsgs(ms []Message, flags int) (int, error) {
return 0, errors.New("not implemented")
}
func (c *Conn) sendMsgs(ms []Message, flags int) (int, error) {
return 0, errors.New("not implemented")
}

View File

@ -0,0 +1,18 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.9
// +build !darwin,!dragonfly,!freebsd,!linux,!netbsd,!openbsd,!solaris,!windows
package socket
import "errors"
func (c *Conn) recvMsg(m *Message, flags int) error {
return errors.New("not implemented")
}
func (c *Conn) sendMsg(m *Message, flags int) error {
return errors.New("not implemented")
}

View File

@ -0,0 +1,25 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.9
package socket
import "errors"
func (c *Conn) recvMsg(m *Message, flags int) error {
return errors.New("not implemented")
}
func (c *Conn) sendMsg(m *Message, flags int) error {
return errors.New("not implemented")
}
func (c *Conn) recvMsgs(ms []Message, flags int) (int, error) {
return 0, errors.New("not implemented")
}
func (c *Conn) sendMsgs(ms []Message, flags int) (int, error) {
return 0, errors.New("not implemented")
}

62
vendor/golang.org/x/net/internal/socket/reflect.go generated vendored Normal file
View File

@ -0,0 +1,62 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.9
package socket
import (
"errors"
"net"
"os"
"reflect"
"runtime"
)
// A Conn represents a raw connection.
type Conn struct {
c net.Conn
}
// NewConn returns a new raw connection.
func NewConn(c net.Conn) (*Conn, error) {
return &Conn{c: c}, nil
}
func (o *Option) get(c *Conn, b []byte) (int, error) {
s, err := socketOf(c.c)
if err != nil {
return 0, err
}
n, err := getsockopt(s, o.Level, o.Name, b)
return n, os.NewSyscallError("getsockopt", err)
}
func (o *Option) set(c *Conn, b []byte) error {
s, err := socketOf(c.c)
if err != nil {
return err
}
return os.NewSyscallError("setsockopt", setsockopt(s, o.Level, o.Name, b))
}
func socketOf(c net.Conn) (uintptr, error) {
switch c.(type) {
case *net.TCPConn, *net.UDPConn, *net.IPConn:
v := reflect.ValueOf(c)
switch e := v.Elem(); e.Kind() {
case reflect.Struct:
fd := e.FieldByName("conn").FieldByName("fd")
switch e := fd.Elem(); e.Kind() {
case reflect.Struct:
sysfd := e.FieldByName("sysfd")
if runtime.GOOS == "windows" {
return uintptr(sysfd.Uint()), nil
}
return uintptr(sysfd.Int()), nil
}
}
}
return 0, errors.New("invalid type")
}

285
vendor/golang.org/x/net/internal/socket/socket.go generated vendored Normal file
View File

@ -0,0 +1,285 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package socket provides a portable interface for socket system
// calls.
package socket // import "golang.org/x/net/internal/socket"
import (
"errors"
"net"
"unsafe"
)
// An Option represents a sticky socket option.
type Option struct {
Level int // level
Name int // name; must be equal or greater than 1
Len int // length of value in bytes; must be equal or greater than 1
}
// Get reads a value for the option from the kernel.
// It returns the number of bytes written into b.
func (o *Option) Get(c *Conn, b []byte) (int, error) {
if o.Name < 1 || o.Len < 1 {
return 0, errors.New("invalid option")
}
if len(b) < o.Len {
return 0, errors.New("short buffer")
}
return o.get(c, b)
}
// GetInt returns an integer value for the option.
//
// The Len field of Option must be either 1 or 4.
func (o *Option) GetInt(c *Conn) (int, error) {
if o.Len != 1 && o.Len != 4 {
return 0, errors.New("invalid option")
}
var b []byte
var bb [4]byte
if o.Len == 1 {
b = bb[:1]
} else {
b = bb[:4]
}
n, err := o.get(c, b)
if err != nil {
return 0, err
}
if n != o.Len {
return 0, errors.New("invalid option length")
}
if o.Len == 1 {
return int(b[0]), nil
}
return int(NativeEndian.Uint32(b[:4])), nil
}
// Set writes the option and value to the kernel.
func (o *Option) Set(c *Conn, b []byte) error {
if o.Name < 1 || o.Len < 1 {
return errors.New("invalid option")
}
if len(b) < o.Len {
return errors.New("short buffer")
}
return o.set(c, b)
}
// SetInt writes the option and value to the kernel.
//
// The Len field of Option must be either 1 or 4.
func (o *Option) SetInt(c *Conn, v int) error {
if o.Len != 1 && o.Len != 4 {
return errors.New("invalid option")
}
var b []byte
if o.Len == 1 {
b = []byte{byte(v)}
} else {
var bb [4]byte
NativeEndian.PutUint32(bb[:o.Len], uint32(v))
b = bb[:4]
}
return o.set(c, b)
}
func controlHeaderLen() int {
return roundup(sizeofCmsghdr)
}
func controlMessageLen(dataLen int) int {
return roundup(sizeofCmsghdr) + dataLen
}
// ControlMessageSpace returns the whole length of control message.
func ControlMessageSpace(dataLen int) int {
return roundup(sizeofCmsghdr) + roundup(dataLen)
}
// A ControlMessage represents the head message in a stream of control
// messages.
//
// A control message comprises of a header, data and a few padding
// fields to conform to the interface to the kernel.
//
// See RFC 3542 for further information.
type ControlMessage []byte
// Data returns the data field of the control message at the head on
// m.
func (m ControlMessage) Data(dataLen int) []byte {
l := controlHeaderLen()
if len(m) < l || len(m) < l+dataLen {
return nil
}
return m[l : l+dataLen]
}
// Next returns the control message at the next on m.
//
// Next works only for standard control messages.
func (m ControlMessage) Next(dataLen int) ControlMessage {
l := ControlMessageSpace(dataLen)
if len(m) < l {
return nil
}
return m[l:]
}
// MarshalHeader marshals the header fields of the control message at
// the head on m.
func (m ControlMessage) MarshalHeader(lvl, typ, dataLen int) error {
if len(m) < controlHeaderLen() {
return errors.New("short message")
}
h := (*cmsghdr)(unsafe.Pointer(&m[0]))
h.set(controlMessageLen(dataLen), lvl, typ)
return nil
}
// ParseHeader parses and returns the header fields of the control
// message at the head on m.
func (m ControlMessage) ParseHeader() (lvl, typ, dataLen int, err error) {
l := controlHeaderLen()
if len(m) < l {
return 0, 0, 0, errors.New("short message")
}
h := (*cmsghdr)(unsafe.Pointer(&m[0]))
return h.lvl(), h.typ(), int(uint64(h.len()) - uint64(l)), nil
}
// Marshal marshals the control message at the head on m, and returns
// the next control message.
func (m ControlMessage) Marshal(lvl, typ int, data []byte) (ControlMessage, error) {
l := len(data)
if len(m) < ControlMessageSpace(l) {
return nil, errors.New("short message")
}
h := (*cmsghdr)(unsafe.Pointer(&m[0]))
h.set(controlMessageLen(l), lvl, typ)
if l > 0 {
copy(m.Data(l), data)
}
return m.Next(l), nil
}
// Parse parses m as a single or multiple control messages.
//
// Parse works for both standard and compatible messages.
func (m ControlMessage) Parse() ([]ControlMessage, error) {
var ms []ControlMessage
for len(m) >= controlHeaderLen() {
h := (*cmsghdr)(unsafe.Pointer(&m[0]))
l := h.len()
if l <= 0 {
return nil, errors.New("invalid header length")
}
if uint64(l) < uint64(controlHeaderLen()) {
return nil, errors.New("invalid message length")
}
if uint64(l) > uint64(len(m)) {
return nil, errors.New("short buffer")
}
// On message reception:
//
// |<- ControlMessageSpace --------------->|
// |<- controlMessageLen ---------->| |
// |<- controlHeaderLen ->| | |
// +---------------+------+---------+------+
// | Header | PadH | Data | PadD |
// +---------------+------+---------+------+
//
// On compatible message reception:
//
// | ... |<- controlMessageLen ----------->|
// | ... |<- controlHeaderLen ->| |
// +-----+---------------+------+----------+
// | ... | Header | PadH | Data |
// +-----+---------------+------+----------+
ms = append(ms, ControlMessage(m[:l]))
ll := l - controlHeaderLen()
if len(m) >= ControlMessageSpace(ll) {
m = m[ControlMessageSpace(ll):]
} else {
m = m[controlMessageLen(ll):]
}
}
return ms, nil
}
// NewControlMessage returns a new stream of control messages.
func NewControlMessage(dataLen []int) ControlMessage {
var l int
for i := range dataLen {
l += ControlMessageSpace(dataLen[i])
}
return make([]byte, l)
}
// A Message represents an IO message.
type Message struct {
// When writing, the Buffers field must contain at least one
// byte to write.
// When reading, the Buffers field will always contain a byte
// to read.
Buffers [][]byte
// OOB contains protocol-specific control or miscellaneous
// ancillary data known as out-of-band data.
OOB []byte
// Addr specifies a destination address when writing.
// It can be nil when the underlying protocol of the raw
// connection uses connection-oriented communication.
// After a successful read, it may contain the source address
// on the received packet.
Addr net.Addr
N int // # of bytes read or written from/to Buffers
NN int // # of bytes read or written from/to OOB
Flags int // protocol-specific information on the received message
}
// RecvMsg wraps recvmsg system call.
//
// The provided flags is a set of platform-dependent flags, such as
// syscall.MSG_PEEK.
func (c *Conn) RecvMsg(m *Message, flags int) error {
return c.recvMsg(m, flags)
}
// SendMsg wraps sendmsg system call.
//
// The provided flags is a set of platform-dependent flags, such as
// syscall.MSG_DONTROUTE.
func (c *Conn) SendMsg(m *Message, flags int) error {
return c.sendMsg(m, flags)
}
// RecvMsgs wraps recvmmsg system call.
//
// It returns the number of processed messages.
//
// The provided flags is a set of platform-dependent flags, such as
// syscall.MSG_PEEK.
//
// Only Linux supports this.
func (c *Conn) RecvMsgs(ms []Message, flags int) (int, error) {
return c.recvMsgs(ms, flags)
}
// SendMsgs wraps sendmmsg system call.
//
// It returns the number of processed messages.
//
// The provided flags is a set of platform-dependent flags, such as
// syscall.MSG_DONTROUTE.
//
// Only Linux supports this.
func (c *Conn) SendMsgs(ms []Message, flags int) (int, error) {
return c.sendMsgs(ms, flags)
}

33
vendor/golang.org/x/net/internal/socket/sys.go generated vendored Normal file
View File

@ -0,0 +1,33 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package socket
import (
"encoding/binary"
"unsafe"
)
var (
// NativeEndian is the machine native endian implementation of
// ByteOrder.
NativeEndian binary.ByteOrder
kernelAlign int
)
func init() {
i := uint32(1)
b := (*[4]byte)(unsafe.Pointer(&i))
if b[0] == 1 {
NativeEndian = binary.LittleEndian
} else {
NativeEndian = binary.BigEndian
}
kernelAlign = probeProtocolStack()
}
func roundup(l int) int {
return (l + kernelAlign - 1) & ^(kernelAlign - 1)
}

17
vendor/golang.org/x/net/internal/socket/sys_bsd.go generated vendored Normal file
View File

@ -0,0 +1,17 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build darwin dragonfly freebsd openbsd
package socket
import "errors"
func recvmmsg(s uintptr, hs []mmsghdr, flags int) (int, error) {
return 0, errors.New("not implemented")
}
func sendmmsg(s uintptr, hs []mmsghdr, flags int) (int, error) {
return 0, errors.New("not implemented")
}

14
vendor/golang.org/x/net/internal/socket/sys_bsdvar.go generated vendored Normal file
View File

@ -0,0 +1,14 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build freebsd netbsd openbsd
package socket
import "unsafe"
func probeProtocolStack() int {
var p uintptr
return int(unsafe.Sizeof(p))
}

View File

@ -0,0 +1,7 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package socket
func probeProtocolStack() int { return 4 }

View File

@ -0,0 +1,7 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package socket
func probeProtocolStack() int { return 4 }

27
vendor/golang.org/x/net/internal/socket/sys_linux.go generated vendored Normal file
View File

@ -0,0 +1,27 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build linux,!s390x,!386
package socket
import (
"syscall"
"unsafe"
)
func probeProtocolStack() int {
var p uintptr
return int(unsafe.Sizeof(p))
}
func recvmmsg(s uintptr, hs []mmsghdr, flags int) (int, error) {
n, _, errno := syscall.Syscall6(sysRECVMMSG, s, uintptr(unsafe.Pointer(&hs[0])), uintptr(len(hs)), uintptr(flags), 0, 0)
return int(n), errnoErr(errno)
}
func sendmmsg(s uintptr, hs []mmsghdr, flags int) (int, error) {
n, _, errno := syscall.Syscall6(sysSENDMMSG, s, uintptr(unsafe.Pointer(&hs[0])), uintptr(len(hs)), uintptr(flags), 0, 0)
return int(n), errnoErr(errno)
}

View File

@ -0,0 +1,55 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package socket
import (
"syscall"
"unsafe"
)
func probeProtocolStack() int { return 4 }
const (
sysSETSOCKOPT = 0xe
sysGETSOCKOPT = 0xf
sysSENDMSG = 0x10
sysRECVMSG = 0x11
sysRECVMMSG = 0x13
sysSENDMMSG = 0x14
)
func socketcall(call, a0, a1, a2, a3, a4, a5 uintptr) (uintptr, syscall.Errno)
func rawsocketcall(call, a0, a1, a2, a3, a4, a5 uintptr) (uintptr, syscall.Errno)
func getsockopt(s uintptr, level, name int, b []byte) (int, error) {
l := uint32(len(b))
_, errno := socketcall(sysGETSOCKOPT, s, uintptr(level), uintptr(name), uintptr(unsafe.Pointer(&b[0])), uintptr(unsafe.Pointer(&l)), 0)
return int(l), errnoErr(errno)
}
func setsockopt(s uintptr, level, name int, b []byte) error {
_, errno := socketcall(sysSETSOCKOPT, s, uintptr(level), uintptr(name), uintptr(unsafe.Pointer(&b[0])), uintptr(len(b)), 0)
return errnoErr(errno)
}
func recvmsg(s uintptr, h *msghdr, flags int) (int, error) {
n, errno := socketcall(sysRECVMSG, s, uintptr(unsafe.Pointer(h)), uintptr(flags), 0, 0, 0)
return int(n), errnoErr(errno)
}
func sendmsg(s uintptr, h *msghdr, flags int) (int, error) {
n, errno := socketcall(sysSENDMSG, s, uintptr(unsafe.Pointer(h)), uintptr(flags), 0, 0, 0)
return int(n), errnoErr(errno)
}
func recvmmsg(s uintptr, hs []mmsghdr, flags int) (int, error) {
n, errno := socketcall(sysRECVMMSG, s, uintptr(unsafe.Pointer(&hs[0])), uintptr(len(hs)), uintptr(flags), 0, 0)
return int(n), errnoErr(errno)
}
func sendmmsg(s uintptr, hs []mmsghdr, flags int) (int, error) {
n, errno := socketcall(sysSENDMMSG, s, uintptr(unsafe.Pointer(&hs[0])), uintptr(len(hs)), uintptr(flags), 0, 0)
return int(n), errnoErr(errno)
}

View File

@ -0,0 +1,11 @@
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "textflag.h"
TEXT ·socketcall(SB),NOSPLIT,$0-36
JMP syscall·socketcall(SB)
TEXT ·rawsocketcall(SB),NOSPLIT,$0-36
JMP syscall·rawsocketcall(SB)

View File

@ -0,0 +1,10 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package socket
const (
sysRECVMMSG = 0x12b
sysSENDMMSG = 0x133
)

View File

@ -0,0 +1,10 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package socket
const (
sysRECVMMSG = 0x16d
sysSENDMMSG = 0x176
)

View File

@ -0,0 +1,10 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package socket
const (
sysRECVMMSG = 0xf3
sysSENDMMSG = 0x10d
)

View File

@ -0,0 +1,10 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package socket
const (
sysRECVMMSG = 0x10ef
sysSENDMMSG = 0x10f7
)

View File

@ -0,0 +1,10 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package socket
const (
sysRECVMMSG = 0x14ae
sysSENDMMSG = 0x14b6
)

View File

@ -0,0 +1,10 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package socket
const (
sysRECVMMSG = 0x14ae
sysSENDMMSG = 0x14b6
)

Some files were not shown because too many files have changed in this diff Show More